小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Solution

感觉自己学的有点死。

直接dp感觉比较困难,考虑正难则反,因为第n个点肯定是要放的,那么在之前放会使代价减小,所以我们先算出只在n个点放的代价,在倒着dp一下算减小的贡献。

方程,dp[i]=max{dp[j]+sum[i]*(j-i)-a[i]}.

整理可得sum[i]*j-(sum[i]*i+a[i]+dp[i])=-dp[j].

因为我们要求dp[i]最大值,所以我们要维护截距最小值,也就是一个下凸包。

emm,感觉自己维护了一个下凸包,连样例都过不了,纠结了一晚上。。。

因为我们的dp过程是倒着做的,所以我们的维护是反着的23333。

Code

#include<iostream>
#include<cstdio>
#define X(i) i
#define Y(i) -dp[i]
#define N 1000002
using namespace std;
typedef long long ll;
ll tot,sum[N],ans,dp[N];
int a[N],q[N],h,t,n,b[N];
inline double calc(int x,int y){
return (double)((double)Y(y)-Y(x))/((double)X(y)-X(x));
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;++i)scanf("%d",&a[i]);
for(int i=;i<=n;++i)scanf("%d",&b[i]),sum[i]=b[i]+sum[i-];
for(int i=;i<n;++i)tot+=1ll*(n-i)*b[i];
tot+=a[n];
q[h=t=]=n;ans=;
for(int i=n-;i>=;--i){
while(h<t&&calc(q[h],q[h+])>sum[i])h++;
dp[i]=dp[q[h]]+(q[h]-i)*sum[i]-a[i];
while(h<t&&calc(q[t-],q[t])<calc(q[t],i))t--;
q[++t]=i;
ans=max(ans,dp[i]);
}
cout<<tot-ans;
return ;
}

bzoj3427小P的牧场(斜率优化dp)的更多相关文章

  1. 【bzoj3437】小P的牧场 斜率优化dp

    题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...

  2. BZOJ3437:小P的牧场(斜率优化DP)

    Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...

  3. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  4. bzoj3437小P的牧场 斜率优化dp

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1542  Solved: 849[Submit][Status][Discus ...

  5. 【BZOJ3437】小P的牧场 斜率优化

    [BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...

  6. bzoj 3437: 小P的牧场 -- 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...

  7. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  8. 蒟蒻关于斜率优化DP简单的总结

    斜率优化DP 题外话 考试的时候被这个玩意弄得瑟瑟发抖 大概是yybGG的Day4 小蒟蒻表示根本不会做..... 然后自己默默地搞了一下斜率优化 这里算是开始吗?? 其实我讲的会非常非常非常简单,, ...

  9. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

随机推荐

  1. MySQL慢查询日志配置方式 slow_query_log

    MySQL慢查询(一) - 开启慢查询 - 鲁玉成 - 博客园 https://www.cnblogs.com/luyucheng/p/6265594.html mysql开启慢查询方法 - lava ...

  2. JQuery/JS select标签动态设置选中值、设置禁止选择 button按钮禁止点击 select获取选中值

    //**1.设置选中值:(根据索引确定选中值)**// var osel=document.getElementById("selID"); //得到select的ID var o ...

  3. java集合迭代器

    一.Java中有一个设计模式是迭代器模式 1.迭代器模式定义迭代器模式(Iterator),提供一种方法顺序访问一个聚合对象中的各种元素,而又不暴露该对象的内部表示. 2.迭代器模式概述Java集合框 ...

  4. HTTL之初印象

    概述 HTTL (Hyper-Text Template Language) 是一个高性能的开源JAVA模板引擎, 适用于动态HTML页面输出, 可替代JSP页面, 指令和Velocity相似. 简洁 ...

  5. java随笔1 Ctrl+1补全

    Ctrl+1补全变量时,如果补全后的不是自己想要的, 比如:补全后这样 修改后 这时要对更改变量进行Ctrl+1补全路径 并且后者要进行Ctrl+1强转

  6. NIO服务器与客户端

    这里客户端没有采用NIO形式 服务器: package com.util.Server.NIO; import javax.print.DocFlavor;import java.io.IOExcep ...

  7. k8s使用glusterfs做存储

    一.安装glusterfs https://www.cnblogs.com/zhangb8042/p/7801181.html 环境介绍; centos 7 [root@k8s-m ~]# cat / ...

  8. Java多线程5:Synchronized锁机制

    一.前言 在多线程中,有时会出现多个线程对同一个对象的变量进行并发访问的情形,如果不做正确的同步处理,那么产生的后果就是“脏读”,也就是获取到的数据其实是被修改过的. 二.引入Synchronized ...

  9. python数学第七天【期望的性质】

  10. 老男孩python学习自修第四天【字典的使用】

    dict = {key1:value1, key2:value2} 定义字典 dict[key] = value 设置字典中指定健的值 dict.pop(key) 删除字典中指定健 dict.popi ...