SP8791 DYNALCA - Dynamic LCA 解题报告
SP8791 DYNALCA - Dynamic LCA
有一个森林最初由 \(n (1 \le n \le 100000)\) 个互不相连的点构成
你需要处理以下操作:
- link A B:添加从顶点A到B的边,使A成为B的子节点,其中保证A是一个根顶点,A和B在不同的树中。
- cut A:切断点A到其父节点的边,保证A是一个非根节点。
- lca A B:输出A和B的最近共同祖先,保证A和B在同一棵树中。
最开始我是这么写的
void LCA(int x,int y)
{
access(x),splay(x),splay(y);
while(par[y]) y=par[y],splay(y);
printf("%d\n",y);
}
然后一直T
改成这个
int access(int now)
{
int las=0;
for(;now;las=now,now=fa)
splay(now),rs=las;
return las;
}
void LCA(int x,int y)
{
access(x);
printf("%d\n",access(y));
}
就过了
恩,需要虚实边转换,否则复杂度是假的
huyufeifei orz告诉我了这个问题
Code:
#include <cstdio>
#include <cctype>
#define fa par[now]
#define rs ch[now][1]
const int N=1e5+10;
template <class T>
inline void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
int ch[N][2],par[N];
bool isroot(int now){return ch[fa][0]==now||ch[fa][1]==now;}
int identity(int now){return ch[fa][1]==now;}
void connect(int f,int now,int typ){ch[fa=f][typ]=now;}
void Rotate(int now)
{
int p=fa,typ=identity(now);
connect(p,ch[now][typ^1],typ);
if(isroot(p)) connect(par[p],now,identity(p));
else fa=par[p];
connect(now,p,typ^1);
}
void splay(int now)
{
for(;isroot(now);Rotate(now))
if(isroot(fa))
Rotate(identity(now)^identity(fa)?now:fa);
}
int access(int now)
{
int las=0;
for(;now;las=now,now=fa)
splay(now),rs=las;
return las;
}
void LCA(int x,int y)
{
access(x);
printf("%d\n",access(y));
}
void Link(int x,int y)
{
access(x),splay(x);
par[x]=y;
}
void cat(int x)
{
access(x),splay(x);
par[ch[x][0]]=0;
ch[x][0]=0;
}
int main()
{
int n,m;char op[23];
read(n),read(m);
for(int x,y,i=1;i<=m;i++)
{
scanf("%s",op);
if(op[1]=='i') read(x),read(y),Link(x,y);
else if(op[1]=='u') read(x),cat(x);
else read(x),read(y),LCA(x,y);
}
return 0;
}
2019.3.10
SP8791 DYNALCA - Dynamic LCA 解题报告的更多相关文章
- 【题解】Luogu SP8791 DYNALCA - Dynamic LCA
原题传送门 这题用Link-Cut-Tree解决,Link-Cut-Tree详解 这道题的难点就在如何求LCA: 我们珂以先对其中一个点进行access操作,然后对另一个点进行access操作,因为L ...
- SP8791 DYNALCA - Dynamic LCA
\(\color{#0066ff}{ 题目描述 }\) 有一个森林最初由 n (\(1 \le n \le 100000\))n(\(1\leq n\leq 100000\)) 个互不相连的点构成 你 ...
- spoj DYNALCA - Dynamic LCA
http://www.spoj.com/problems/DYNALCA/ 此题link.cut要求不能换根,当然也保证link时其中一个点必定已经是根. 方法: void link(Node *x, ...
- 洛谷 P4211 [LNOI2014]LCA 解题报告
[LNOI2014]LCA 题意 给一个\(n(\le 50000)\)节点的有根树,询问\(l,r,z\),求\(\sum_{l\le i\le r}dep[lca(i,z)]\) 一直想启发式合并 ...
- 洛谷 P2617 Dynamic Rankings 解题报告
P2617 Dynamic Rankings 题目描述 给定一个含有\(n\)个数的序列\(a[1],a[2],a[3],\dots,a[n]\),程序必须回答这样的询问:对于给定的\(i,j,k\) ...
- CH Round #56 - 国庆节欢乐赛解题报告
最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...
- 习题:codevs 1519 过路费 解题报告
今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...
- 【NOIP2015】提高day2解题报告
题目: P1981跳石头 描述 一年一度的“跳石头”比赛又要开始了!这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N ...
- NOIP2015 提高组(senior) 解题报告
过了这么久才来发解题报告,蒟蒻实在惭愧 /w\ Day1 T1 [思路] 模拟 [代码] #include<iostream> #include<cstring> #inclu ...
随机推荐
- Docker bridge br0 pipework
Docker Centos7 下建立 Docker 桥接网络 - weifengCorp - 博客园https://www.cnblogs.com/weifeng1463/p/7468497.html ...
- FAIL - Deploy Upload Failed, Exception: [org.apache.tomcat.util.http.fileupload.FileUploadBase$SizeLimitExceededException: the request was rejected because its size (112503036) exceeds the configured
Message: FAIL - Deploy Upload Failed, Exception: [org.apache.tomcat.util.http.fileupload.FileUpload ...
- react插件包
react-scoped-style support ie8,ie8+,chrome,firefox,safari does not support css priority (just apply ...
- laravel 项目表单中有csrf_token,但一直报错419错误 解决redis连接错误:MISCONF Redis is configured to save RDB snapshots, but it is currently not able to persi
laravel 项目表单中有csrf_token,但一直报错419错误,因为项目中使用到Redis缓存,在强制关闭Redis后出现的问题,查询laravel.log文件查找相关问题 安装redis后在 ...
- css3特殊图形(气泡)
一.气泡 效果: body{ background: #dd5e9d; height: 100%; } .paopao { position: absolute; width: 200px; heig ...
- DLNA流媒体设置
- IIS下载地址
https://www.microsoft.com/zh-cn/download/confirmation.aspx?id=1038
- C# Note3:大话Ninject
前言 之所以研究Ninject,是因为初入职在开发XX项目的ComponentService部分时用到了它,一下子发现了它的强大.渐渐地发现在项目中,有时会用到优秀的第三方开源库,这些都是前人智慧的结 ...
- C# Note2:委托(delegate) & Lambda表达式 & 事件(event)
前言 本文主要讲述委托和Lambda表达式的基础知识,以及如何通过Lambda表达式实现委托调用,并阐述.NET如何将委托用作实现事件的方式. 参考:C#高级编程 1.什么是委托(delegate)? ...
- 建议3---理解Python与C语言的不同之处
我们都知道,Python的底层是用C语言实现的,但切忌用C语言的思维和风格来编写Python代码.Python与其他语言有很多不同,以下来进行简单的分析: (1)"缩进"与“{}” ...