SP8791 DYNALCA - Dynamic LCA 解题报告
SP8791 DYNALCA - Dynamic LCA
有一个森林最初由 \(n (1 \le n \le 100000)\) 个互不相连的点构成
你需要处理以下操作:
- link A B:添加从顶点A到B的边,使A成为B的子节点,其中保证A是一个根顶点,A和B在不同的树中。
- cut A:切断点A到其父节点的边,保证A是一个非根节点。
- lca A B:输出A和B的最近共同祖先,保证A和B在同一棵树中。
最开始我是这么写的
void LCA(int x,int y)
{
access(x),splay(x),splay(y);
while(par[y]) y=par[y],splay(y);
printf("%d\n",y);
}
然后一直T
改成这个
int access(int now)
{
int las=0;
for(;now;las=now,now=fa)
splay(now),rs=las;
return las;
}
void LCA(int x,int y)
{
access(x);
printf("%d\n",access(y));
}
就过了
恩,需要虚实边转换,否则复杂度是假的
huyufeifei orz告诉我了这个问题
Code:
#include <cstdio>
#include <cctype>
#define fa par[now]
#define rs ch[now][1]
const int N=1e5+10;
template <class T>
inline void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
int ch[N][2],par[N];
bool isroot(int now){return ch[fa][0]==now||ch[fa][1]==now;}
int identity(int now){return ch[fa][1]==now;}
void connect(int f,int now,int typ){ch[fa=f][typ]=now;}
void Rotate(int now)
{
int p=fa,typ=identity(now);
connect(p,ch[now][typ^1],typ);
if(isroot(p)) connect(par[p],now,identity(p));
else fa=par[p];
connect(now,p,typ^1);
}
void splay(int now)
{
for(;isroot(now);Rotate(now))
if(isroot(fa))
Rotate(identity(now)^identity(fa)?now:fa);
}
int access(int now)
{
int las=0;
for(;now;las=now,now=fa)
splay(now),rs=las;
return las;
}
void LCA(int x,int y)
{
access(x);
printf("%d\n",access(y));
}
void Link(int x,int y)
{
access(x),splay(x);
par[x]=y;
}
void cat(int x)
{
access(x),splay(x);
par[ch[x][0]]=0;
ch[x][0]=0;
}
int main()
{
int n,m;char op[23];
read(n),read(m);
for(int x,y,i=1;i<=m;i++)
{
scanf("%s",op);
if(op[1]=='i') read(x),read(y),Link(x,y);
else if(op[1]=='u') read(x),cat(x);
else read(x),read(y),LCA(x,y);
}
return 0;
}
2019.3.10
SP8791 DYNALCA - Dynamic LCA 解题报告的更多相关文章
- 【题解】Luogu SP8791 DYNALCA - Dynamic LCA
原题传送门 这题用Link-Cut-Tree解决,Link-Cut-Tree详解 这道题的难点就在如何求LCA: 我们珂以先对其中一个点进行access操作,然后对另一个点进行access操作,因为L ...
- SP8791 DYNALCA - Dynamic LCA
\(\color{#0066ff}{ 题目描述 }\) 有一个森林最初由 n (\(1 \le n \le 100000\))n(\(1\leq n\leq 100000\)) 个互不相连的点构成 你 ...
- spoj DYNALCA - Dynamic LCA
http://www.spoj.com/problems/DYNALCA/ 此题link.cut要求不能换根,当然也保证link时其中一个点必定已经是根. 方法: void link(Node *x, ...
- 洛谷 P4211 [LNOI2014]LCA 解题报告
[LNOI2014]LCA 题意 给一个\(n(\le 50000)\)节点的有根树,询问\(l,r,z\),求\(\sum_{l\le i\le r}dep[lca(i,z)]\) 一直想启发式合并 ...
- 洛谷 P2617 Dynamic Rankings 解题报告
P2617 Dynamic Rankings 题目描述 给定一个含有\(n\)个数的序列\(a[1],a[2],a[3],\dots,a[n]\),程序必须回答这样的询问:对于给定的\(i,j,k\) ...
- CH Round #56 - 国庆节欢乐赛解题报告
最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...
- 习题:codevs 1519 过路费 解题报告
今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...
- 【NOIP2015】提高day2解题报告
题目: P1981跳石头 描述 一年一度的“跳石头”比赛又要开始了!这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N ...
- NOIP2015 提高组(senior) 解题报告
过了这么久才来发解题报告,蒟蒻实在惭愧 /w\ Day1 T1 [思路] 模拟 [代码] #include<iostream> #include<cstring> #inclu ...
随机推荐
- 01-VMware-workstation14安装
VMware-workstation14安装步骤: 首先现在虚拟机wmware,我现在的版本是:VMware-workstation-full-14.1.1.28517.exe 到处这里就安装完成: ...
- JEECG 单点登录 SSO
jeecg中用户登录的唯一性-CSDN问答https://ask.csdn.net/questions/656639 JEECG 集成KiSSO单点登录实现统一身份认证 - zhangdaiscott ...
- JQuery/JS select标签动态设置选中值、设置禁止选择 button按钮禁止点击 select获取选中值
//**1.设置选中值:(根据索引确定选中值)**// var osel=document.getElementById("selID"); //得到select的ID var o ...
- java lang(Comparable接口) 和java util(Comparator接口)分析比较
//Comparable 接口强行对实现它的每个类的对象进行整体排序. -- 自然排序.类的compareTo称为自然比较方法. public interface Comparable<T> ...
- Day 4-5 序列化 json & pickle &shelve
序列化: 序列化是指把内存里的数据类型转变成字符串,以使其能存储到硬盘或通过网络传输到远程,因为硬盘或网络传输时只能接受bytes. 反序列化: 把字符转成内存里的数据类型. 用于序列化的两个模块.他 ...
- CLOUD SQL跟踪
CLOUD会自动在后台执行一些sql语句,所以追踪起来比较麻烦,需要加入一些过滤条件. 比如关键的CLIENTPROCESSID,加入后 ,就能过滤是哪个客户度执行的数据. 过滤数据.
- git修改用户名、邮箱
在windows使用git命令方法如下(以win7为例):1.msysgit 是 Windows 版的 Git可以百度搜索Git下载.2.安装完成后,开始菜单里找到“Git”->“Git Bas ...
- 从Oracle数据库中查询前几个月数据时需要注意的一些问题
在最近的一个项目中,有一个需求就是要查询数据库中前几个月的历史数据,但是由于自己考虑不全面造成了程序的bug,现在将这一块好好作一个总结,希望以后不再犯这种很低级的错误,首先贴出查询中用到的一个子函数 ...
- DAY02、正式介绍python
一.编程语言介绍(***) 1.1.机器语言:直接用计算机能理解的二进制指令编写程序,直接控制硬件 1.2.汇编语言:用英文标签取代二进制指令编写程序,本质也是直接控制硬件 1.3.高级语言:用人类能 ...
- Yii的数值比较验证器
该验证器比对两个特定输入值之间的关系 是否与 operator 属性所指定的相同. compareAttribute:用于与原属性相比对的属性名称. 当该验证器被用于验证某目标属性时, 该属性会默认为 ...