【BZOJ2618】[CQOI2006]凸多边形(半平面交)
【BZOJ2618】[CQOI2006]凸多边形(半平面交)
题面
题解
这个东西就是要求凸多边形的边所形成的半平面交。
那么就是一个半平面交模板题了。
这里写的是平方的做法。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 10010
#define inf 1000
#define double long double
const double eps=0;
struct Point{double x,y,ang;};
bool operator<(Point a,Point b){return (a.ang!=b.ang)?a.ang<b.ang:a.x<b.x;}
Point operator+(Point a,Point b){return (Point){a.x+b.x,a.y+b.y};}
Point operator-(Point a,Point b){return (Point){a.x-b.x,a.y-b.y};}
Point operator*(Point a,double b){return (Point){a.x*b,a.y*b};}
Point operator/(Point a,double b){return (Point){a.x/b,a.y/b};}
double operator*(Point a,Point b){return a.x*b.x+a.y*b.y;}
double Cross(Point a,Point b){return a.x*b.y-a.y*b.x;}
double Len(Point a){return sqrt(a.x*a.x+a.y*a.y);}
double Dis(Point a,Point b){return Len(a-b);}
Point Rotate(Point p,double a){double c=cos(a),s=sin(a);return (Point){p.x*c-p.y*s,p.x*s+p.y*c};}
struct Line{Point a,v;};
Point S[MAX],tmp[MAX];int top;
Point Intersection(Line a,Line b)
{
Point c=b.a-a.a;
double t=Cross(b.v,c)/Cross(b.v,a.v);
return a.a+a.v*t;
}
void pre()
{
top=0;
S[++top]=(Point){inf,inf};
S[++top]=(Point){-inf,inf};
S[++top]=(Point){-inf,-inf};
S[++top]=(Point){inf,-inf};
}
void Cut(Line a)
{
S[top+1]=S[1];int tot=0;
for(int i=1;i<=top;++i)
{
double v1=Cross(a.v,S[i]-a.a);
double v2=Cross(a.v,S[i+1]-a.a);
if(v1>=0)tmp[++tot]=S[i];
if(v1*v2<0)tmp[++tot]=Intersection(a,(Line){S[i],S[i+1]-S[i]});
}
top=tot;for(int i=1;i<=top;++i)S[i]=tmp[i];
}
int n;Point p[MAX];
int main()
{
int T;scanf("%d",&T);pre();
while(T--)
{
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%Lf%Lf",&p[i].x,&p[i].y);
for(int i=1;i<=n;++i)p[i].x+=eps;
p[n+1]=p[1];
for(int i=1;i<=n;++i)Cut((Line){p[i],p[i+1]-p[i]});
continue;
}
double ans=0;S[top+1]=S[1];
for(int i=2;i<=top;++i)ans+=Cross(S[i]-S[1],S[i+1]-S[1]);
printf("%.3Lf\n",ans/2);
}
【BZOJ2618】[CQOI2006]凸多边形(半平面交)的更多相关文章
- BZOJ2618[Cqoi2006]凸多边形——半平面交
题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...
- bzoj2618[Cqoi2006]凸多边形 半平面交
这是一道半平面交的裸题,第一次写半平面交,就说一说我对半平面交的理解吧. 所谓半平面交,就是求一大堆二元一次不等式的交集,而每个二元一次不等式的解集都可以看成是在一条直线的上方或下方,联系直线的标准方 ...
- 【bzoj2618】[Cqoi2006]凸多边形 半平面交
题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...
- P4196 [CQOI2006]凸多边形 半平面交
\(\color{#0066ff}{题目描述}\) 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. \(\color{#0066f ...
- luogu4196 [CQOI2006]凸多边形 半平面交
据说pkusc出了好几年半平面交了,我也来水一发 ref #include <algorithm> #include <iostream> #include <cstdi ...
- POJ3525 半平面交
题意:求某凸多边形内部离边界最远的点到边界的距离 首先介绍半平面.半平面交的概念: 半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围.如图所示: 半平面交:多个半平面的交集.有点类似 ...
- bzoj 4445 小凸想跑步 - 半平面交
题目传送门 vjudge的快速通道 bzoj的快速通道 题目大意 问在一个凸多边形内找一个点,连接这个点和所有顶点,使得与0号顶点,1号顶点构成的三角形是最小的概率. 假设点的位置是$(x, y)$, ...
- 【kuangbin专题】计算几何_半平面交
1.poj3335 Rotating Scoreboard 传送:http://poj.org/problem?id=3335 题意:就是有个球场,球场的形状是个凸多边形,然后观众是坐在多边形的边上的 ...
- bzoj 3190 赛车 半平面交
直接写的裸的半平面交,已经有点背不过模板了... 这题卡精度,要用long double ,esp设1e-20... #include<iostream> #include<cstd ...
- BZOJ 4445 [Scoi2015]小凸想跑步:半平面交
传送门 题意 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 $ n $ 边形,$ n $ 个顶点 $ P_i $ 按照逆时针从 $ 0 $ 至 $ n-1 $ 编号. ...
随机推荐
- 使用junit测试
package creeper; import java.util.Scanner; public class size { private static int intercePosition = ...
- asp.net Json序列化
Json作为一种数据传输格式与标准被广泛的使用在项目开发中,可以说简直离不开它.那么怎么来生成JSON格式的数据就成了我们首先需要解决的问题这里我们使用.net. 首先是获取数据 public ban ...
- Mission Impossible 6
题目:Mission Impossible 6 题目链接:http://hihocoder.com/problemset/problem/1228 题目大意: 大概就是让我们写一个代码模拟文本编辑器的 ...
- 剑指offer(7)
今天的几道题目都是关于斐波那契数列的. 题目1: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 传统的方法采用递归函数,这种 ...
- Flutter 常用工具类库common_utils
地址:https://pub.flutter-io.cn/packages/common_utils#-readme-tab- Dart常用工具类库 common_utils 1.TimelineUt ...
- Hbase表结构模型
- kubernetes资源类别介绍
类别 名称 资源对象 Pod.ReplicaSet.ReplicationController.Deployment.StatefulSet.DaemonSet.Job.CronJob.Horizon ...
- final关键字的用法
final关键字的作用 1.被final修饰的类不能被继承 报错信息:cannot inherit from final 'com.dajia.test.Animal' 2.被final修饰的方法不能 ...
- LodopFuncs.js和CLodopFuncs.js区别和联系
所在位置:LodopFuncs.js可以在官网下载中心综合版里下载到.CLodopfuncs.js在C-Lodop服务缓存中,C-Lodop启动的时候才能访问到. 需不需要下载放置到项目里:(客户端本 ...
- 手机连接WiFi有感叹号x怎么回事?如何消除手机WiFi感叹号?
经过多年的革新,现在的安卓系统已经非常优秀了,某些程度已经超越iOS,卡顿和耗电也不再是安卓系统的代名词了.而为了体验到最优秀的安卓系统,不少人都会购买海外的手机,因为海外手机的安卓系统都比较精简,非 ...