题目链接:P2473 [SCOI2008]奖励关

题意:
有n个宝物 每次等概率抛出其中之一
一共抛出k次
每个宝物有一个价值 和一个前提集合
只有集齐了集合中的所有宝物 才可以领取这个宝物
范围:1 <= k <= 100, 1 <= n <= 15,分值为[-106,106]内的整数
 
这个范围长得很dp呀
这个n长得很状压啊
 
最初想法:
对于负价值宝物
我们计算它本身的贡献与它带来的期望贡献
来判定是否可取
对每一个宝物记录它自己的贡献
最后求和
 
正解:逆向状压
2 ^ 15 = 32768
由于为什么不是正向 是为了避开在第i轮状态S不合法的情况
这就是本题的思维瓶颈
刚刚纠结的负数问题 其实说白了就是取决于它后面的状态
所以逆推又避开了这个坑
显然二维dp 一维控制轮数 一维控制状态
三重循环 外面两重分别是这两维
第三重枚举第1~n个物品
若状态j中有物品k需要的所有物品
那么它的价值就是取或不取的最大值
max(f[i + 1][j], f[i + 1][j | (1 << k)] + w[k])
没有就只能不取
f[i + 1][j]
由于求的是期望
每个状态转移完除以n
附上代码:
 #include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
const int N = ;
const int M = ;
int inc[M + ];
double w[M + ];
int n, m;
double f[N][ << M]; int main(){
scanf("%d%d", &m, &n);
for(int i = , x; i <= n; i++){
scanf("%lf", &w[i]);
while(scanf("%d", &x) && x)
inc[i] |= ( << x);
}
int lb;
for(int i = m; i >= ; i--)
for(int j = ; j < ( << (n + )); j++){
for(int k = ; k <= n; k++){
if((j & inc[k]) == inc[k]){
f[i][j] += max(f[i + ][j], f[i + ][j | ( << k)] + w[k]);
}
else f[i][j] += f[i + ][j];
}
f[i][j] /= (1.0 * n);
}
printf("%.6lf", f[][]);
return ;
}

LG P2473 [SCOI2008]奖励关的更多相关文章

  1. P2473 [SCOI2008]奖励关(期望)

    P2473 [SCOI2008]奖励关 $n<=15$,显然的状压 设$f[i][w]$表示前$i$轮,状态$w$的最大期望 蓝后我们发现一个问题:$f[i][w]$可能是非法的 于是我们从$f ...

  2. 洛谷 P2473 [SCOI2008]奖励关 解题报告

    P2473 [SCOI2008]奖励关 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出\(k\)次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝 ...

  3. Luogu P2473 [SCOI2008]奖励关

    比较恶心的概率(期望)+状压DP,想正推2H的我瑟瑟发抖 由于数据范围不大,因此我们可以直接状压每个宝物取或不取的情况,设\(f_{i,j}\)表示前\(i\)轮且宝物是否取过的状态为\(j\)时的方 ...

  4. P2473 [SCOI2008]奖励关

    思路 n<=15,所以状压 因为求期望,所以采用逆推的思路,设\(f[i][S]\)表示1~i的宝物获得情况是S,i+1~k的期望 状态转移是当k可以取时,\(f[i][S]+=max(f[i+ ...

  5. 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)

    题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...

  6. 洛谷P2473 [SCOI2008]奖励关(期望+状压)

    传送门 我数学期望还是太差了…… 先考虑状压模型,设$dp[i][S]$表示第$i$轮,当前宝物状态为$S$,能获得的最大期望分数 然而这个模型有一个问题,第$i$轮不一定能达到状态$S$ 那么考虑转 ...

  7. 洛谷 P2473 [SCOI2008]奖励关 ( 期望DP )

    题目链接 题意 : 中文题.点链接 分析 : 第一道有关概率期望的DP 有个大部分情况下通用的结论 概率正推.期望反推 原因不明.其实是没有查到较好的解释 这题由于有一些取物品的先决条件在这里 而且观 ...

  8. 【洛谷】2473:[SCOI2008]奖励关【期望DP(倒推)】

    P2473 [SCOI2008]奖励关 题目背景 08四川NOI省选 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不 ...

  9. 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

    [BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

随机推荐

  1. C. Ayoub and Lost Array

    链接 [https://codeforces.com/contest/1105/problem/C] 题意 给你n,表示数组长度,元素的值是l到r,问有多少种方案使得所有元素和整除3 分析 思维dp, ...

  2. mysql数据从windows导出,再导入到linux

    从windows导出时,要注意字符集最好和linux的一致,如linux字符集一般为utf8,则导出时可以加上参数--default-character-set=utf8指定字符集,然后导入到linu ...

  3. html,css学习实践总结

    网页的布局方式 1.什么是网页的布局方式? 网页的布局方式其实就是指浏览器是如何对网页中的元素进行排版的 1.标准流(文档流/普通流)排版方式 1.1其实浏览器默认的排版方式就是标准流的排版方式 1. ...

  4. linux系统下MySQL表名区分大小写问题

    linux系统下MySQL表名区分大小写问题 https://www.cnblogs.com/jun1019/p/7073227.html [mysqld] lower_case_table_name ...

  5. SSH上传/下载本地文件到linux服务器

    在linux下一般用scp这个命令来通过ssh传输文件. 1.从服务器上下载文件 scp username@servername:/path/filename /var/www/local_dir(本 ...

  6. # 【Python3练习题 007】 有一对兔子,从出生后第3个月起每个月都生一对兔子, # 小兔子长到第三个月后每个月又生一对兔子, # 假如兔子都不死,问每个月的兔子总数为多少?

    # 有一对兔子,从出生后第3个月起每个月都生一对兔子,# 小兔子长到第三个月后每个月又生一对兔子, # 假如兔子都不死,问每个月的兔子总数为多少?这题反正我自己是算不出来.网上说是经典的“斐波纳契数列 ...

  7. [转帖]关于CP936

    来源: 知乎:https://www.zhihu.com/question/35609295/answer/63780022 CP936和UTF-8本身和Python是毫无关联的. CP936其实就是 ...

  8. linuxmint 搜狗输入法安装

    1.下载搜狗输入法linux安装包 2.进入安装包目录终端键入 dpkg -i [软件包名字] 3.设置语言选项中选择fcitx 4.重启电脑

  9. SAP配置BOM的适用范围

    配置BOM中定义属性,单纯的编码要搞死人: 适合小批量周期短多品种

  10. windows环境下protobuf的java操作{编译,序列化,反序列化}

    google protocol buffer的使用和原理 概况: Protocol Buffers(也就是protobuf)是谷歌的语言中立的.平台中立的.可扩展的用于序列化结构化的数据: windo ...