训练样本空间

  每个样本使用5×5的二值矩阵表征一个字母。一共10个字母类型,分别是N,I,L,H,T,C,E,F,Z,V。每个字母9个样本。共90个。

	N1=[1,0,0,0,1;
1,0,0,0,1;
1,0,1,0,1;
1,0,0,1,1;
1,0,0,0,1];
N2=[1,0,0,0,1;
1,1,0,0,1;
1,0,1,0,0;
1,0,0,1,1;
1,0,0,0,1];
·
·
·
·
·
·
N9=[1,0,0,0,1;
1,1,0,0,1;
1,0,1,1,1;
1,0,0,1,1;
1,0,0,0,1];
I1=[0,0,1,1,0;
0,0,1,0,0;
0,0,1,0,0;
0,0,1,0,0;
0,1,1,1,0];
I2=[0,1,1,1,0;
0,0,1,0,0;
0,0,0,0,0;
0,0,1,0,0;
0,1,1,1,0];
·
·
·
·
·
·
V8=[1,0,0,0,1;
1,0,0,0,0;
0,1,0,1,0;
0,1,0,1,0;
0,0,1,0,0];
V9=[1,0,1,0,1;
1,0,0,0,1;
0,1,0,1,0;
0,1,0,1,0;
0,0,1,0,0];
%训练集
P=[N1(1:end);N2(1:end);N3(1:end);
N4(1:end);N5(1:end);N6(1:end);
N7(1:end);N8(1:end);N9(1:end);
I1(1:end);I2(1:end);I3(1:end);
I4(1:end);I5(1:end);I6(1:end);
I7(1:end);I8(1:end);I9(1:end);
L1(1:end);L2(1:end);L3(1:end);
L4(1:end);L5(1:end);L6(1:end);
L7(1:end);L8(1:end);L9(1:end);
H1(1:end);H2(1:end);H3(1:end);
H4(1:end);H5(1:end);H6(1:end);
H7(1:end);H8(1:end);H9(1:end);
T1(1:end);T2(1:end);T3(1:end);
T4(1:end);T5(1:end);T6(1:end);
T7(1:end);T8(1:end);T9(1:end);
C1(1:end);C2(1:end);C3(1:end);
C4(1:end);C5(1:end);C6(1:end);
C7(1:end);C8(1:end);C9(1:end);
E1(1:end);E2(1:end);E3(1:end);
E4(1:end);E5(1:end);E6(1:end);
E7(1:end);E8(1:end);E9(1:end);
F1(1:end);F2(1:end);F3(1:end);
F4(1:end);F5(1:end);F6(1:end);
F7(1:end);F8(1:end);F9(1:end);
Z1(1:end);Z2(1:end);Z3(1:end);
Z4(1:end);Z5(1:end);Z6(1:end);
Z7(1:end);Z8(1:end);Z9(1:end);
V1(1:end);V2(1:end);V3(1:end);
V4(1:end);V5(1:end);V6(1:end);
V7(1:end);V8(1:end);V9(1:end);]';%注意转置

期望输出

	%期望输出,每一列表示一个样本的期望输出。
T=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ;
];

测试样本空间

%测试样本空间:为10个字母
N0=[1,0,0,0,1;
1,1,0,0,1;
1,0,1,0,1;
1,0,0,1,1;
1,0,0,0,1];
I0=[0,1,1,1,0;
0,0,1,0,0;
0,0,1,0,0;
0,0,1,0,0;
0,1,1,1,0];
L0=[1,0,0,0,0;
1,0,0,0,0;
1,0,0,0,0;
1,0,0,0,0;
1,1,1,1,1];
H0=[1,0,0,0,1;
1,0,0,0,1;
1,1,1,1,1;
1,0,0,0,1;
1,0,0,0,1];
T0=[1,1,1,1,1;
0,0,1,0,0;
0,0,1,0,0;
0,0,1,0,0;
0,0,1,0,0];
C0=[1,1,1,1,1;
1,0,0,0,0;
1,0,0,0,0;
1,0,0,0,0;
1,1,1,1,1];
E0=[1,1,1,1,1;
1,0,0,0,0;
1,1,1,1,0;
1,0,0,0,0;
1,1,1,1,1];
F0=[1,1,1,1,0;
1,0,0,0,0;
1,1,1,0,0;
1,0,0,0,0;
1,0,0,0,0];
Z0=[1,1,1,1,1;
0,0,0,1,0;
0,0,1,0,0;
0,1,0,0,0;
1,1,1,1,1];
V0=[1,0,0,0,1;
1,0,0,0,1;
0,1,0,1,0;
0,1,0,1,0;
0,0,1,0,0];
%测试集
X=[N0(1:end);I0(1:end);L0(1:end);H0(1:end);T0(1:end);
C0(1:end);E0(1:end);F0(1:end);Z0(1:end);V0(1:end);]';%注意转置

参数设置与训练网络

	%参数设置函数
net=newff(P,T,11);
net.trainParam.epochs=50;%最大迭代次数
net.trainParam.goal=0.000001;%计算期望与实际的差,当小于这个值时,迭代停止
net.trainParam.lr=0.2;%学习速率 %用训练样本集、期望输出来训练我们设置的网络
net=train(net,P,T);

测试阶段

	%使用sim将测试样本集X进行测试,% sim函数用于仿真一个神经网络,输出结果返回到C
C=sim(net,X);

输出结果

  在命令窗口用:

C(回车换行)

即可查看输出的分类结果:

	>> C

	C =

	    0.0844    0.0347    1.0807    0.9751    0.8557    0.9753    0.9901    0.8641    1.0358    1.0402
1.1358 1.0816 0.0260 0.0904 -0.0034 -0.0285 0.9873 1.0561 1.0743 0.9758
0.6802 1.0481 -0.0390 0.0107 1.0695 1.0152 0.0134 0.0654 0.9796 0.9731
-0.2012 0.7774 0.0502 0.9262 0.0497 0.9352 -0.0690 0.7618 -0.0061 1.1026

Matlab实现BP网络识别字母的更多相关文章

  1. Matlab实现单层感知机网络识别字母

    感知机网络的参数设置 % 具体用法: % net=newp(pr,T,TF,LF); % % pr: pr是一个R×2的矩阵,R为感知器中输入向量的维度(本例中使用35个字符表征一个字母,那么其维度为 ...

  2. 基于Opencv自带BP网络的车标简易识别

    代码地址如下:http://www.demodashi.com/demo/12966.html 记得把这几点描述好咯:代码实现过程 + 项目文件结构截图 + 演示效果 1.准备工作 1.1 训练集和测 ...

  3. Matlab的BP神经网络工具箱及其在函数逼近中的应用

    1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈 ...

  4. 详细MATLAB 中BP神经网络算法的实现

    MATLAB 中BP神经网络算法的实现 BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数.离散值或者向量的函数,这里就简单介绍一下如何用MATLAB编程实现该算法. 具体步骤   这里 ...

  5. 关于BP网络的一些总结

    背景 前段时间,用过一些模型如vgg,lexnet,用于做监督学习训练,顺带深入的学习了一下相关模型的结构&原理,对于它的反向传播算法记忆比较深刻, 就自己的理解来描述一下BP网络. 关于BP ...

  6. 基于Levenberg-Marquardt训练算法的BP网络Python实现

    经过一个多月的努力,终于完成了BP网络,参考的资料为: 1.Training feed-forward networks with the Marquardt algorithm 2.The Leve ...

  7. Python实现bp神经网络识别MNIST数据集

    title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...

  8. 从头推导与实现 BP 网络

    从头推导与实现 BP 网络 回归模型 目标 学习 \(y = 2x\) 模型 单隐层.单节点的 BP 神经网络 策略 Mean Square Error 均方误差 \[ MSE = \frac{1}{ ...

  9. 我对BP网络的简单的理解

    最近在学习tf的神经网络算法,十多年没有学习过数学了,本来高中数学的基础,已经彻底还给数学老师了.所以我把各种函数.公式和推导当做黑盒子来用,理解他们能做到什么效果,至于他们是如何做到的,暂时不去深究 ...

随机推荐

  1. 动态材质实例(Dynamic Material Instance)

    转自:http://blog.csdn.net/panda1234lee/article/details/62041775 本例将通过 “靠近影响椅子的颜色” 来展示什么是 动态材质实例(Dynami ...

  2. Linux下安装与卸载anaconda

    安装:到安装文件夹的目录下输入 bash Anaconda3-4.1.1-Linux-x86_64.sh 卸载:输入

  3. (转)OpenSystemArchitect - 根据数据库表逆向生成数据模型

    原文地址:http://www.cnblogs.com/zhaojin/archive/2011/04/14/2016478.html OpenSystemArchitect - 根据数据库表逆向生成 ...

  4. linux:ubuntu安装mysql(二)--推荐

    1)下载mysql安装包mysql-5.7.24-linux-glibc2.12-x86_64.tar.gz,下载地址:https://dev.mysql.com/downloads/mysql/ 2 ...

  5. 【Linux】【secureCRT】下载,安装,激活攻略

    以前公司使用的是SSH访问Linux服务器,今天争取了能看到数据,问了同事使用的是secureCRT,然后自己就装了一个. 下载地址:https://www.vandyke.com/download/ ...

  6. StanFord ML 笔记 第八部分

    第八部分内容:  1.正则化Regularization 2.在线学习(Online Learning) 3.ML 经验 1.正则化Regularization 1.1通俗解释 引用知乎作者:刑无刀 ...

  7. IntelliJ IDEA 编译代码报错 找不到符号 符号: 找不到符号包 包

    在使用IDEA的时候,经常出现过找不到包或者找不到符号的情况,可以尝试以下几种方式来解决 1.如果项目使用的是Maven可以使用Maven-Reimport 2.还可以 Invalidate and ...

  8. 《算法导论》——MaximumSubArray

    今天我们讨论的算法是最大子数组问题. 首先我定义了一个类用来保存最大子数组的开始位置索引.结束位置索引和该数组的和.代码如下: class MaximumSubArray { private: int ...

  9. java -version 问题 : C:\ProgramData\Oracle\Java\javapath;

    我把 JAVA_HOME 从8改成了 7 , 为什么还是 显示的8啊 ! E:\sv0\jars>java -version java version "1.8.0_111" ...

  10. Mybatis学习4——核心文件sqlMapperConfig.xml属性

    1.外部文件jdbc.properties jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/mybatis ...