NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记
count
题目大意:
长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出现一次。
对于每一个正整数\(k=1,..,n+1\),求出的本质不同的长度为\(k\)的子序列的数量。对\(10^9+7\)取模。
思路:
由于只会有一个数会重复,因此考虑重复的这个数取\(0\)个、\(1\)个和\(2\)个的情况,用组合数直接算即可。
源代码:
#include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=1e5+2,mod=1e9+7;
int a[N],fac[N],ifac[N],last[N];
void exgcd(const int &a,const int &b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline int inv(const int &x) {
int ret,tmp;
exgcd(x,mod,ret,tmp);
return ret;
}
inline int C(const int &n,const int &m) {
if(n<m) return 0;
return (int64)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
int main() {
const int n=getint();
for(register int i=fac[0]=1;i<=n+1;i++) {
fac[i]=(int64)fac[i-1]*i%mod;
}
ifac[n+1]=inv(fac[n+1]);
for(register int i=n+1;i>=1;i--) {
ifac[i-1]=(int64)ifac[i]*i%mod;
}
int l;
for(register int i=1;i<=n+1;i++) {
a[i]=getint();
if(last[a[i]]) l=i-last[a[i]];
last[a[i]]=i;
}
for(register int i=1;i<=n+1;i++) {
printf("%d\n",(C(n+1,i)-C(n-l,i-1)+mod)%mod);
}
return 0;
}
delete
题目大意:
长度为\(n(n\le10^6)\)的序列\(A\),从中删去恰好\(k\)个元素(右边的元素往左边移动),记\(cnt\)为新序列中\(A_i=i\)的元素个数。求\(cnt\)的最大值。
思路:
将\(A\)以\(i-A_i\)为第一关键字、\(A_i\)为第二关键字排序。就转化成了LIS问题。
时间复杂度\(\mathcal O(n\log n)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e6+1;
int n,m;
std::pair<int,int> a[N];
class FenwickTree {
private:
int val[N];
int lowbit(const int &x) const {
return x&-x;
}
public:
void modify(int p,const int &x) {
for(;p<=n;p+=lowbit(p)) {
val[p]=std::max(val[p],x);
}
}
int query(int p) const {
int ret=0;
for(;p;p-=lowbit(p)) {
ret=std::max(ret,val[p]);
}
return ret;
}
};
FenwickTree bit;
int main() {
n=getint(),m=n-getint();
for(register int i=1;i<=n;i++) {
const int &x=getint();
a[i]=std::make_pair(i-x,x);
}
std::sort(&a[1],&a[n]+1);
int ans=0;
for(register int i=1;i<=n;i++) {
if(a[i].first<0) continue;
if(a[i].second>n) continue;
const int tmp=bit.query(a[i].second-1)+1;
if(tmp>m) continue;
bit.modify(a[i].second,tmp);
if(a[i].first<=n-m&&a[i].second<=m) ans=std::max(ans,tmp);
}
printf("%d\n",ans);
return 0;
}
power
题目大意:
一棵包含\(n(n\le10^5)\)个节点的树,对于这棵树中的一个连通块,它的能量为它拥有的节点中编号连续的最长的一段。求大小不超过\(k\)的连通块的最大能量值。
思路:
包含若干点的最小连通块的大小是这些点按照DFS序排序后,(相邻点之间距离和+首尾两点距离)/2+1。
使用尺取法枚举连续段,同时用set
按照DFS序维护这些结点,同时维护每一时刻连通块的大小即可。
时间复杂度\(\mathcal O(n\log n)\)。
源代码:
#include<set>
#include<cstdio>
#include<cctype>
#include<vector>
#include<climits>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e5+1,logN=17;
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
int dfn[N],id[N],tmp,dep[N],anc[N][logN];
inline int lg2(const float &x) {
return ((unsigned&)x>>23&255)-127;
}
void dfs(const int &x,const int &par) {
anc[x][0]=par;
dep[x]=dep[par]+1;
id[dfn[x]=++dfn[0]]=x;
for(register int i=1;i<=lg2(dep[x]);i++) {
anc[x][i]=anc[anc[x][i-1]][i-1];
}
for(auto &y:e[x]) {
if(y==par) continue;
dfs(y,x);
}
}
inline int lca(int x,int y) {
if(dep[x]<dep[y]) std::swap(x,y);
for(register int i=lg2(dep[x]-dep[y]);i>=0;i--) {
if(dep[anc[x][i]]>=dep[y]) x=anc[x][i];
}
for(register int i=lg2(dep[x]);i>=0;i--) {
if(anc[x][i]!=anc[y][i]) {
x=anc[x][i];
y=anc[y][i];
}
}
return x==y?x:anc[x][0];
}
inline int dist(const int &x,const int &y) {
const int z=lca(x,y);
return dep[x]+dep[y]-dep[z]*2;
}
std::set<int> set;
inline void ins(const int &x) {
const auto p=--set.lower_bound(x);
const auto q=set.upper_bound(x);
if(*p!=INT_MIN) tmp+=dist(id[x],id[*p]);
if(*q!=INT_MAX) tmp+=dist(id[x],id[*q]);
if(*p!=INT_MIN&&*q!=INT_MAX) tmp-=dist(id[*p],id[*q]);
set.insert(x);
}
inline void del(const int &x) {
const auto p=--set.lower_bound(x);
const auto q=set.upper_bound(x);
if(*p!=INT_MIN) tmp-=dist(id[x],id[*p]);
if(*q!=INT_MAX) tmp-=dist(id[x],id[*q]);
if(*p!=INT_MIN&&*q!=INT_MAX) tmp+=dist(id[*p],id[*q]);
set.erase(x);
}
inline int dist2() {
const int x=*++set.begin();
const int y=*++set.rbegin();
if(x==INT_MIN||y==INT_MAX) return 0;
return dist(id[x],id[y]);
}
int main() {
const int n=getint(),k=getint();
for(register int i=1;i<n;i++) {
add_edge(getint(),getint());
}
dfs(1,0);
int ans=0;
set.insert(INT_MAX);
set.insert(INT_MIN);
ins(1);
for(register int p=1,q=1;q<=n;ins(dfn[++q])) {
while((tmp+dist2())/2+1>k) del(dfn[p++]);
ans=std::max(ans,q-p+1);
}
printf("%d\n",ans);
return 0;
}
NOI.AC NOIP模拟赛 第五场 游记的更多相关文章
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)
题目链接:http://noi.ac/contest/12/problem/37 题目: 小W收到了一张纸带,纸带上有 n个位置.现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色 ...
- NOI.AC NOIP模拟赛R3解题报告
心路历程 预计得分:\(100+100+50=250\) 实际得分:\(10 +100 +50 = 160\) 三道原题,真好.T2做过,T1写了个错误思路,T3写了写50分状压dp. 整场考试实际在 ...
- NOI.AC WC模拟赛
4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...
- 东北育才 NOIP模拟赛第1场
终于400了.这套题很鬼畜.两道贪心. GRACE sort过后,不能直接统计,本人毫无多想,相同的直接放在一起.结果太多人AC. SUM sigma+异或和(可使用前缀和处理),本人毫无考虑乱MOD ...
随机推荐
- Nginx模块之Nginx-Ts-Module学习笔记(一)抢险体验
1.通过HTTP接收MPEG-TS2.生产和管理Live HLS 3.按照官方的编译和配置,当然了我是第一次编译没有通过,在作者重新调整下,编译成功,感谢:@arut https://github.c ...
- spring框架学习(三)spring与junit整合测试
package cn.mf.b_test; import javax.annotation.Resource; import org.junit.Test; import org.junit.runn ...
- 第6月第17天 CGAffineTransformMake(a,b,c,d,tx,ty) 矩阵运算的原理
1. 为了把二维图形的变化统一在一个坐标系里,引入了齐次坐标的概念,即把一个图形用一个三维矩阵表示,其中第三列总是(0,0,1),用来作为坐标系的标准.所以所有的变化都由前两列完成. 以上参数在矩阵中 ...
- 多源复制遇到CREATE USER FAILED错误
MySQL Multi-Source Replication enables a replication slave to receive transactions from multiple sou ...
- iOS动画1 — UIView动画
iOS动画基础是Core Animation核心动画.Core Animation是iOS平台上负责图形渲染与动画的基础设施.由于核心动画的实现比较复杂,苹果提供了实现简单动画的接口—UIView动画 ...
- Git 使用规范流程【转】
转自:http://www.ruanyifeng.com/blog/2015/08/git-use-process.html 作者: 阮一峰 日期: 2015年8月 5日 团队开发中,遵循一个合理.清 ...
- linux常用运维命令【转】
自己的小网站跑在阿里云的ECS上面,偶尔也去分析分析自己网站服务器日志,看看网站的访问量.看看有没有黑阔搞破坏!于是收集,整理一些服务器日志分析命令,大家可以试试! 1.查看有多少个IP访问: awk ...
- C# 百度搜索结果xpath分析
using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Net ...
- 几个node项目实例-《转载》
1. 词搜索 根据一个特效匹配模式搜索整个英语词典词.这个程序是一个相当实在的应用.有足够的不平常代码,帮助你学习NodeJS应用架构以及如何使用NodeJS做一些有用的平台. 它使用expressw ...
- tab切换webuploader失效的解决方法
<script type="text/javascript"> $(document).ready(function () { $('#tt').tabs({ bord ...