C Looooops
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions:33752   Accepted: 9832

Description

A Compiler Mystery: We are given a C-language style for loop of type

for (variable = A; variable != B; variable += C)

statement;

I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k.

Input

The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop.

The input is finished by a line containing four zeros.

Output

The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

Sample Input

3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0

Sample Output

0
2
32766
FOREVER
翻译:在循环里,values值为a,每次加c,如果values不等于b,就继续循环下去,死循环输出forever,否则输出循环次数。所有运算都对无符号的k位二进制求模。
解题过程:
设p=2^k
起点为a,每次加c,对p求模若能等于b对p求模则有解,否则无解,输出forever
有解的话设解为x
(a+cx)%p = b%p
a%p + cx%p = b%p
cx%p = (b-a)%p
cx%p + 0 = (b-a)%p
cx%p + yp%p = (b-a)%p
形如ax+by=gcd,扩展欧几里得定理。
 #include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<math.h>
#include<string>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
// ax + by = gcd(a,b)
ll exgcd(ll a, ll b, ll &x, ll &y)//扩展欧几里德定理
{
if(b==)//终有一次a%b传进来是0,递归出口
{
x=;
y=;
return a;
}
ll q=exgcd(b,a%b,y,x);
//最终递归出来,y1=1,x1=0
y=y-(a/b)*x;
//后面的y相当于下一个递归的x2,x相当于下一个递归的y2,符合推导公式
//x1=y2; y1=x2-[a/b]*y2;
return q;
} int main()
{
ll a,b,c,k,p,x,y;
while(scanf("%lld %lld %lld %lld",&a,&b,&c,&k)!=EOF&&(a+b+c+k))
{
p=;
for(ll i=;i<=k;i++)
p=p*;
ll gcd=exgcd(c,p,x,y);
ll d=b-a;
if(d%gcd)
printf("FOREVER\n");
else
{
ll multiple=d/gcd;///倍数
p=p/gcd;///通解公式:x=x+b/gcd y=y-a/gcd
x=( (x*multiple)%p+p )%p;///求最小正数解
printf("%lld\n",x);
}
}
return ;
}

poj2115-Looooops-(扩展欧几里得定理)的更多相关文章

  1. hdu2669-Romantic-(扩展欧几里得定理)

    Romantic Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  2. poj1061-青蛙的约会-(贝祖定理+扩展欧几里得定理+同余定理)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:132162   Accepted: 29199 Descripti ...

  3. poj 1061(扩展欧几里得定理求不定方程)

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...

  4. poj2115 C Looooops——扩展欧几里得

    题目:http://poj.org/problem?id=2115 就是扩展欧几里得呗: 然而忘记除公约数... 代码如下: #include<iostream> #include< ...

  5. C Looooops(扩展欧几里得+模线性方程)

    http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...

  6. POJ2115 C Looooops[扩展欧几里得]

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 24355   Accepted: 6788 Descr ...

  7. C Looooops(扩展欧几里得)

    C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20128 Accepted: 5405 Descripti ...

  8. POJ 2115 C Looooops(扩展欧几里得)

    辗转相除法(欧几里得算法) 时间复杂度:在O(logmax(a, b))以内 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a ...

  9. POJ 2115 C Looooops扩展欧几里得

    题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...

  10. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

随机推荐

  1. CS229 2.深入梯度下降(Gradient Descent)算法

    1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainS ...

  2. 2-scala集合

    1.集合的数据结构: array.seq .set .map(映射) 2.集合分类 集合分为可变集合和不可变集合(除元组外,元组没有可变和不可变) scala.collection.immutable ...

  3. js_字符转Unicode

    在开发中总会遇到关于Unicode的转码和解码,每次都找工具转/解码很麻烦 ,今天在网上get到一个简单的转/解Unicode的函数. var UnicodeFun = { toUnicode: fu ...

  4. tornado-websocket

    WebSockets 允许浏览器和服务器之间进行 双向通信 server端: class WebSocketHandler(WebBaseHandler): ''' websocket ''' use ...

  5. gentoo: startx: drmsetmaster failed: permission denied

    今天更新了 xorg-server 之后, startx 就进不了 X了,但是可以用 sudo startx 进入 X,所以感觉很奇怪. 后来终于在 gentoo 官方论坛上面找到答案了. https ...

  6. SUSE 图形化界面/How to enable/disable AS Java Safe Mode

    vncserver 不同的用户使用不同的图形化环境变量 比如sidadm用户要启动configtools.sh 需要sidadm来启动图形化 如何将java切换成safe mode 2125707 - ...

  7. asp.net excel导出去除科学计数法的表示格式

    去除导出excel中的科学计数法的表示格式:在td标签里面加个样式:style=\"vnd.ms-excel.numberformat:@\" <td style=\&quo ...

  8. kubernetes安装过程报错及解决方法

    1.your configuration file uses an old API spec: "kubeadm.k8s.io/v1alpha2". 执行kubeadm init ...

  9. springMVC源码学习之获取参数名

    1.入口到参数处理调用流程 入口为spring-webmvc-4.3.18.RELEASE.jar中org.springframework.web.servlet.DispatcherServlet. ...

  10. [手把手教你] 用Swoft 搭建微服务(TCP RPC)

    序言 Swoft Framework 基于 Swoole 原生协程的新时代 PHP 全栈式协程框架 Swoft 是什么? Swoft 框架是首个基于Swoole 原生协程的新时代 PHP高性能协程全栈 ...