# -*- coding=utf-8 -*-
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense,Flatten,Dropout
from keras.optimizers import Adadelta
from keras.datasets import cifar10
from keras import applications

import matplotlib.pyplot as plt
%matplotlib inline

vgg_model=applications.VGG19(include_top=False,weights='imagenet')
vgg_model.summary()

(train_x,train_y),(test_x,test_y)=cifar10.load_data()
print(train_x.shape,train_y.shape,test_x.shape,test_y.shape)

n_classes=10
train_y=keras.utils.to_categorical(train_y,n_classes)
test_y=keras.utils.to_categorical(test_y,n_classes)

bottleneck_feature_train=vgg_model.predict(train_x,verbose=1)
bottleneck_feature_test=vgg_model.predict(test_x,verbose=1)

print(bottleneck_feature_train.shape,bottleneck_feature_test.shape)

my_model=Sequential()
my_model.add(Flatten())###my_model.add(Flatten(input_shape=?))
my_model.add(Dense(512,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(256,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(n_classes,activation='softmax'))
my_model.compile(optimizer=Adadelta(),loss="categorical_crossentropy",\
metrics=['accuracy'])
my_model.fit(bottleneck_feature_train,train_y,batch_size=128,epochs=50,verbose=1)

evaluation=my_model.evaluate(bottleneck_feature_test,test_y,batch_size=128,verbose=0)
print("loss:",evaluation[0],"accuracy:",evaluation[1])

def predict_label(img_idx,show_proba=True):
plt.imshow(train_x[img_idx],aspect='auto')
plt.title("Image to be labeled")
plt.show()
img_4D=(bottleneck_feature_train[img_idx])[np.newaxis,:,:,:]
prediction=my_model.predict_classes(img_4D,batch_size=1,verbose=0)
print("Actual class:{0}\nPredict class:{1}".format(np.argmax(train_y[img_idx],0),prediction))

if show_proba:
pred=my_model.predict_proba(img_4D,batch_size=1,verbose=0)
print(pred)

for i in range(3):
predict_label(i,show_proba=True)

吴裕雄 python神经网络(8)的更多相关文章

  1. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  2. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  3. 吴裕雄 python神经网络 手写数字图片识别(5)

    import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...

  4. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  5. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  6. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  7. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  8. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

  9. 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用

    #训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...

  10. 吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_ ...

随机推荐

  1. JavaBean转xml

    JavaBean转xml的工具就是:XStream XStream的作用: XStream可以把JavaBean对象转换成XML!通常服务器向客户端响应的数据都是来自数据库的一组对象,当我们不能直接把 ...

  2. ElasticSearch 核心概念

    ElasticSearch核心概念-Cluster ElasticSearch核心概念-shards ElasticSearch核心概念-replicas ElasticSearch核心概念-reco ...

  3. angularjs中ng-repeat插入图片

    <tr ng-repeat="item in datas" ng-module="datas"> <td> <img class ...

  4. win10 java1.7安装笔记

    博主不选择安装C盘,选择在D盘安装,新建Java文件夹,在Java文件夹中新建两个子文件夹,一个命名jdk1.7,一个命名jre,如果不区分目录安装jdk和jre,会导致一些文件的缺失,导致一些错误, ...

  5. Docker使用札记 - Dockerfile指令

    ARG ARG跟ENV都可以定义变量,不同在于ARG在构建期结束时是销毁,而ENV定义的是系统中的环境变量,不会在构建结束时销毁,在以后的构建中直接使用. 当ARG和ENV定义相同名称的变量时,ENV ...

  6. 为DOM节点添加或者删除class

    项目中如果应用了常用的javascript类库,多数情况下,这些已经封装好的类库,都会封装一个类似于addClass和removeClass的方法,以便于我们对DOM节点的class进行操作. 以jQ ...

  7. 【Jenkins学习】安装配置和使用(一)

    为了能够频繁地将软件的最新版本,及时.持续地交付给测试团队及质量控制团队,以供评审,所以引入持续集成工具Jenkins,从而实现公司新产品持续集成,自动化部署. 环境准备 ●操作系统:Windows1 ...

  8. 傅立叶变换系列(五)快速傅立叶变换(FFT)

    说明: 傅里叶级数.傅里叶变换.离散傅里叶变换.短时傅里叶变换...这些理解和应用都非常难,网上的文章有两个极端:“Esay”  Or  “Boring”!如果单独看一两篇文章就弄懂傅里叶,那说明你真 ...

  9. 接口详解例子代码(附Java1.8的接口新特性)

    接口,与抽象类类似但是区别也很大,他们都是标签,用来提醒父类一定要实现的类里创建抽象方法.而接口类可以implements 多个接口,抽象类则只能父类只能继承一个抽象类,与抽象不同的是它不是继承组合关 ...

  10. 16.纯 CSS 创作一个渐变色动画边框

    原文地址:https://segmentfault.com/a/1190000014785816 感想:边框是伪元素::after来的: HTML代码: <div class="box ...