16. 窗口函数 (Window Function) 的使用
从SQL Server 2005起,SQL Server开始支持窗口函数 (Window Function),以及到SQL Server 2012,窗口函数功能增强,目前为止支持以下几种窗口函数:
1. 排序函数 (Ranking Function) ;
2. 聚合函数 (Aggregate Function) ;
3. 分析函数 (Analytic Function) ;
4. NEXT VALUE FOR Function, 这是给sequence专用的一个函数;
一. 排序函数(Ranking Function)
帮助文档里的代码示例很全。
排序函数中,ROW_NUMBER()较为常用,可用于去重、分页、分组中选择数据,生成数字辅助表等等;
排序函数在语法上要求OVER子句里必须含ORDER BY,否则语法不通过,对于不想排序的场景可以这样变通;
drop table if exists test_ranking create table test_ranking
(
id int not null,
name varchar(20) not null,
value int not null
) insert test_ranking
select 1,'name1',1 union all
select 1,'name2',2 union all
select 2,'name3',2 union all
select 3,'name4',2 select id , name, ROW_NUMBER() over (PARTITION by id ORDER BY name) as num
from test_ranking select id , name, ROW_NUMBER() over (PARTITION by id) as num
from test_ranking
/*
Msg 4112, Level 15, State 1, Line 1
The function 'ROW_NUMBER' must have an OVER clause with ORDER BY.
*/ --ORDERY BY后面给一个和原表无关的派生列
select id , name, ROW_NUMBER() over (PARTITION by id ORDER BY GETDATE()) as num
from test_ranking select id , name, ROW_NUMBER() over (PARTITION by id ORDER BY (select 0)) as num
from test_ranking
二. 聚合函数 (Aggregate Function)
SQL Server 2005中,窗口聚合函数仅支持PARTITION BY,也就是说仅能对分组的数据整体做聚合运算;
SQL Server 2012开始,窗口聚合函数支持ORDER BY,以及ROWS/RAGNE选项,原本需要子查询来实现的需求,如: 移动平均 (moving averages), 总计聚合 (cumulative aggregates), 累计求和 (running totals) 等,变得更加方便;
代码示例1:总计/小计/累计求和
drop table if exists test_aggregate; create table test_aggregate
(
event_id varchar(100),
rk int,
price int
) insert into test_aggregate
values
('a',1,10),
('a',2,10),
('a',3,50),
('b',1,10),
('b',2,20),
('b',3,30) --1. 没有窗口函数时,用子查询
select a.event_id,
a.rk, --build ranking column if needed
a.price,
(select sum(price) from test_aggregate b where b.event_id = a.event_id and b.rk <= a.rk) as totalprice
from test_aggregate a --2. 从SQL Server 2012起,用窗口函数
--2.1
--没有PARTITION BY, 没有ORDER BY,为全部总计;
--只有PARTITION BY, 没有ORDER BY,为分组小计;
--只有ORDER BY,没有PARTITION BY,为全部累计求和(RANGE选项,见2.2)
select *,
sum(price) over() as TotalPrice,
sum(price) over(partition by event_id) as SubTotalPrice,
sum(price) over(order by rk) as RunningTotalPrice
from test_aggregate a --2.2 注意ORDER BY列的选择,可能会带来不同结果
select *,
sum(price) over(partition by event_id order by rk) as totalprice
from test_aggregate a
/*
event_id rk price totalprice
a 1 10 10
a 2 10 20
a 3 50 70
b 1 10 10
b 2 20 30
b 3 30 60
*/ select *,
sum(price) over(partition by event_id order by price) as totalprice
from test_aggregate a
/*
event_id rk price totalprice
a 1 10 20
a 2 10 20
a 3 50 70
b 1 10 10
b 2 20 30
b 3 30 60
*/ --因为ORDER BY还有个子选项ROWS/RANGE,不指定的情况下默认为RANGE UNBOUNDED PRECEDING AND CURRENT ROW
--RANGE按照ORDER BY中的列值,将相同的值的行均视为当前同一行
select *,sum(price) over(partition by event_id order by price) as totalprice from test_aggregate a
select *,sum(price) over(partition by event_id order by price range between unbounded preceding and current row) as totalprice from test_aggregate a --如果ORDER BY中的列值有重复值,手动改用ROWS选项即可实现逐行累计求和
select *,sum(price) over(partition by event_id order by price rows between unbounded preceding and current row) as totalprice from test_aggregate a
代码示例2:移动平均
--移动平均,举个例子,就是求前N天的平均值,和股票市场的均线类似
drop table if exists test_moving_avg create table test_moving_avg
(
ID int,
Value int,
DT datetime
) insert into test_moving_avg
values
(1,10,GETDATE()-10),
(2,110,GETDATE()-9),
(3,100,GETDATE()-8),
(4,80,GETDATE()-7),
(5,60,GETDATE()-6),
(6,40,GETDATE()-5),
(7,30,GETDATE()-4),
(8,50,GETDATE()-3),
(9,20,GETDATE()-2),
(10,10,GETDATE()-1) --1. 没有窗口函数时,用子查询
select *,
(select AVG(Value) from test_moving_avg a where a.DT >= DATEADD(DAY, -5, b.DT) AND a.DT < b.DT) AS avg_value_5days
from test_moving_avg b --2. 从SQL Server 2012起,用窗口函数
--三个内置常量,第一行,最后一行,当前行:UNBOUNDED PRECEDING, UNBOUNDED FOLLOWING, CURRENT ROW
--在行间移动,用BETWEEN m preceding AND n following (m, n > 0)
SELECT *,
sum(value) over (ORDER BY DT ROWS BETWEEN 5 preceding AND CURRENT ROW) moving_sum,
avg(value) over (ORDER BY DT ROWS BETWEEN 4 preceding AND CURRENT ROW) moving_avg1,
avg(value) over (ORDER BY DT ROWS BETWEEN 5 preceding AND 1 preceding) moving_avg2,
avg(value) over (ORDER BY DT ROWS BETWEEN 3 preceding AND 1 following) moving_avg3
FROM test_moving_avg
ORDER BY DT
三. 分析函数 (Analytic Function)
代码示例1:取当前行某列的前一个/下一个值
drop table if exists test_analytic create table test_analytic
(
SalesYear varchar(10),
Revenue int,
Offset int
) insert into test_analytic
values
(2013,1001,1),
(2014,1002,1),
(2015,1003,1),
(2016,1004,1),
(2017,1005,1),
(2018,1006,1) --当年及去年的销售额
select *,lag(Revenue,1,null) over(order by SalesYear asc) as PreviousYearRevenue from test_analytic
select *,lag(Revenue,Offset,null) over(order by SalesYear asc) as PreviousYearRevenue from test_analytic
select *,lead(Revenue,1,null) over(order by SalesYear desc) as PreviousYearRevenue from test_analytic --当年及下一年的销售额
select *,lead(Revenue,1,null) over(order by SalesYear asc) as NextYearRevenue from test_analytic
select *,lead(Revenue,Offset,null) over(order by SalesYear asc) as NextYearRevenue from test_analytic
select *,lag(Revenue,1,null) over(order by SalesYear desc) as NextYearRevenue from test_analytic --可以根据offset调整跨度
代码示例2:分组中某列最大/最小值,对应的其他列值
假设有个门禁系统,在员工每次进门时写入一条记录,记录了“身份号码”,“进门时间”,“衣服颜色",查询每个员工最后一次进门时的“衣服颜色”。
drop table if exists test_first_last create table test_first_last
(
EmployeeID int,
EnterTime datetime,
ColorOfClothes varchar(20)
) insert into test_first_last
values
(1001, GETDATE()-9, 'GREEN'),
(1001, GETDATE()-8, 'RED'),
(1001, GETDATE()-7, 'YELLOW'),
(1001, GETDATE()-6, 'BLUE'),
(1002, GETDATE()-5, 'BLACK'),
(1002, GETDATE()-4, 'WHITE') --1. 用子查询
--LastColorOfColthes
select * from test_first_last a
where not exists(select 1 from test_first_last b where a.EmployeeID = b.EmployeeID and a.EnterTime < b.EnterTime) --LastColorOfColthes
select *
from
(select *, ROW_NUMBER() over(partition by EmployeeID order by EnterTime DESC) num
from test_first_last ) t
where t.num =1 --2. 用窗口函数
--用LAST_VALUE时,必须加上ROWS/RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING,否则结果不正确
select *,
FIRST_VALUE(ColorOfClothes) OVER (PARTITION BY EmployeeID ORDER BY EnterTime DESC) as LastColorOfClothes,
FIRST_VALUE(ColorOfClothes) OVER (PARTITION BY EmployeeID ORDER BY EnterTime ASC) as FirstColorOfClothes,
LAST_VALUE(ColorOfClothes) OVER (PARTITION BY EmployeeID ORDER BY EnterTime ASC ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) as LastColorOfClothes,
LAST_VALUE(ColorOfClothes) OVER (PARTITION BY EmployeeID ORDER BY EnterTime DESC ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) as FirstColorOfClothes
from test_first_last --对于显示表中所有行,并追加Last/First字段时用窗口函数方便些
--对于挑选表中某一行/多行时,用子查询更方便
四. NEXT VALUE FOR Function
drop sequence if exists test_seq create sequence test_seq
start with 1
increment by 1; GO drop table if exists test_next_value create table test_next_value
(
ID int,
Name varchar(10)
) insert into test_next_value(Name)
values
('AAA'),
('AAA'),
('BBB'),
('CCC') --对于多行数据获取sequence的next value,是否使用窗口函数都会逐行计数
--窗口函数中ORDER BY用于控制不同列值的计数顺序
select *, NEXT VALUE FOR test_seq from test_next_value
select *, NEXT VALUE FOR test_seq OVER(ORDER BY Name DESC) from test_next_value
参考:
SELECT - OVER Clause (Transact-SQL)
SQL Server Windowing Functions: ROWS vs. RANGE
https://www.sqlpassion.at/archive/2015/01/22/sql-server-windowing-functions-rows-vs-range/
16. 窗口函数 (Window Function) 的使用的更多相关文章
- SQL Server Window Function 窗体函数读书笔记一 - SQL Windowing
SQL Server 窗体函数主要用来处理由 OVER 子句定义的行集, 主要用来分析和处理 Running totals Moving averages Gaps and islands 先看一个简 ...
- SQL Server Window Function 窗体函数读书笔记二 - A Detailed Look at Window Functions
这一章主要是介绍 窗体中的 Aggregate 函数, Rank 函数, Distribution 函数以及 Offset 函数. Window Aggregate 函数 Window Aggrega ...
- Calling a parent window function from an iframe
I want to call a parent window JavaScript function from an iframe. <script>function abc(){ ale ...
- PostgreSQL 窗口函数 ( Window Functions ) 如何使用?
一.为什么要有窗口函数 我们直接用例子来说明,这里有一张学生考试成绩表testScore: 现在有个需求,需要查询的时候多出一列subject_avg_score,为此科目所有人的平均成绩,好跟每个人 ...
- 翻译:window function(已提交到MariaDB官方手册)
本文为mariadb官方手册:window functions的译文. 原文:https://mariadb.com/kb/en/window-functions-overview/ 我提交到Mari ...
- Flink 的Window 操作(基于flink 1.3描述)
Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作.本文主要聚焦于在Flink中如何进行窗口操作,以及程序员如何 ...
- Flink中的window、watermark和ProcessFunction
一.Flink中的window 1,window简述 window 是一种切割无限数据为有限块进行处理的手段.Window 是无限数据流处理的核心,Window 将一个无限的 stream 拆分成有 ...
- 详解SQL操作的窗口函数
摘要:窗口函数是聚集函数的延伸,是更高级的SQL语言操作,主要用于AP场景下对数据进行一些分析.汇总.排序的功能. 本文分享自华为云社区<GaussDB(DWS) SQL进阶之SQL操作之窗口函 ...
- temp表空间被过多占用处理方法
这个步骤比较简单,查询v$sort_usage就可以了: (select username,session_addr,sql_id,contents,segtype,blocks*8/1024/102 ...
随机推荐
- MVC源码分析 - ModelBinder绑定 / 自定义数据绑定
这几天老感觉不对, 总觉得少点什么, 今天才发现, 前面 3 里面, 在获取Action参数信息的时候, 少解析了. 里面还有一个比较重要的东西. 今天看也是一样的. 在 InvokeAction( ...
- gitlab的md文件内使用锚点
markdown中使用锚点的格式: [要显示的内容](#锚点的链接) 如: [工具](#tool) 又因为再markdown中每一个标题都默认是锚点,所以事情就简单了 # test ## conten ...
- WPF中的TextBlock隐藏边框
TextBlock默认是有边框的,显示效果如下:有一个淡蓝色的边框围绕着 如果需要隐藏这个边框,则只需要在代码中加上以下代码即可: BorderBrush="{x:Null}" B ...
- Spring 注解方式引入配置文件
配置文件,我以两种为例,一种是引入Spring的XML文件,另外一种是.properties的键值对文件: 一.引入Spring XML的注解是@ImportResource @Retention(R ...
- Newbe.Claptrap - 一套以 “事件溯源” 和“Actor 模式”作为基本理论的服务端开发框架
本文是关于 Newbe.Claptrap 项目主体内容的介绍,读者可以通过这篇文章,大体了解项目内容. 轮子源于需求 随着互联网应用的蓬勃发展,相关的技术理论和实现手段也在被不断创造出来.诸如 “云原 ...
- spring@value取不到值的几种情况
一,spring组件重写构造方法,在构造方法中引用@value为null 由于spring实例化顺序为先执行构造方法,再注入成员变量,所以序为先执行构造方法,再注入成员变量,所以ing实例化顺取值为n ...
- SQL SERVER存储过程中使用事务
存储过程格式: CREATE PROCEDURE YourProcedure AS BEGIN SET NOCOUNT ON; BEGIN TRY---------------------开始捕捉异常 ...
- Net 使用UEditor笔记
WebForm使用Ueditor获取编辑器的值有两种方法:1.通过前台js 获取 function test() { alert(UE.getEditor('控件Id').getContent()); ...
- Bell(矩阵快速幂+中国剩余定理)
Bell Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status ...
- 大明A+B(hdu1753)大数,java
大明A+B Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submissi ...