根为r时x、y的公共祖先,就是lca(x,r),lca(x,y),lca(r,y)中深度最大的那一个,不要再在倍增的时候判来判去还判不对了...

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=3e5+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int eg[maxn*][],egh[maxn],ect;
int dfn[maxn][],tot;
int dep[maxn],fa[maxn][];
int N,M; inline void adeg(int a,int b){
eg[++ect][]=b;eg[ect][]=egh[a];egh[a]=ect;
} void dfs(int x){
for(int i=;fa[x][i]&&fa[fa[x][i]][i];i++){
fa[x][i+]=fa[fa[x][i]][i];
}
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(b==fa[x][]) continue;
dep[b]=dep[x]+,fa[b][]=x;
dfs(b);
}
} int lca(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
for(int i=log2(dep[x]-dep[y]+);i>=;i--){
if(fa[x][i]&&dep[fa[x][i]]>=dep[y])
x=fa[x][i];
}
if(x==y) return x;
for(int i=log2(dep[x]);i>=;i--){
if(fa[x][i]&&fa[y][i]&&fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
}
return fa[x][];
} int main(){
//freopen("","r",stdin);
int i;
N=rd(),M=rd();
for(i=;i<N;i++){
int a=rd(),b=rd();
adeg(a,b);adeg(b,a);
}
dep[]=;dfs();
for(i=;i<=M;i++){
int r=rd(),x=rd(),y=rd();
int a=lca(x,y),b=lca(x,r),c=lca(y,r);
int mm=max(dep[a],max(dep[b],dep[c]));
if(dep[a]==mm) printf("%d\n",a);
else if(dep[b]==mm) printf("%d\n",b);
else printf("%d\n",c);
}
return ;
}

suoi31 最近公共祖先2 (倍增lca)的更多相关文章

  1. 图论--最近公共祖先问题(LCA)模板

    最近公共祖先问题(LCA)是求一颗树上的某两点距离他们最近的公共祖先节点,由于树的特性,树上两点之间路径是唯一的,所以对于很多处理关于树的路径问题的时候为了得知树两点的间的路径,LCA是几乎最有效的解 ...

  2. [luogu3379]最近公共祖先(树上倍增求LCA)

    题意:求最近公共祖先. 解题关键:三种方法,1.st表 2.倍增法 3.tarjan 此次使用倍增模板(最好采用第一种,第二种纯粹是习惯) #include<cstdio> #includ ...

  3. 最近公共祖先问题(LCA)的几种实现方式

    LCA也是很经典的内容了,我这个蒟蒻居然今天才开始弄QAQ 我太弱啦! 照例先上定义——————转自维基百科 在图论和计算机科学中,最近公共祖先是指在一个树或者有向无环图中同时拥有v和w作为后代的最深 ...

  4. caioj 1236 最近公共祖先 树倍增算法模版 倍增

    [题目链接:http://caioj.cn/problem.php?id=1236][40eebe4d] 代码:(时间复杂度:nlogn) #include <iostream> #inc ...

  5. 【HIHOCODER 1067】最近公共祖先·二(LCA)

    描述 上上回说到,小Hi和小Ho用非常拙劣--或者说粗糙的手段山寨出了一个神奇的网站,这个网站可以计算出某两个人的所有共同祖先中辈分最低的一个是谁.远在美国的他们利用了一些奇妙的技术获得了国内许多人的 ...

  6. hihoCoder #1067 : 最近公共祖先·二 [ 离线LCA tarjan ]

    传送门: #1067 : 最近公共祖先·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上上回说到,小Hi和小Ho用非常拙劣——或者说粗糙的手段山寨出了一个神奇的网站 ...

  7. [HIHO1062] 最近公共祖先·一(lca, 并查集, 二分, 神trick)

    题目链接:http://hihocoder.com/problemset/problem/1062 题意裸,有个trick,导致我当年做的时候一直在WA... 那就是出现这种没有出现在关系中,但是依然 ...

  8. 最近公共祖先算法LCA笔记(树上倍增法)

    Update: 2019.7.15更新 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了. 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了 ...

  9. 最近公共祖先(LCA)问题

    目录 最近公共祖先 1.向上标记法 2.树上倍增法 3.Tarjan算法 最近公共祖先 定义:给定一颗有根树,若结点 z 既是 x 的祖先,也是 y 的祖先,则称 z 是 x,y 的公共祖先.在 x, ...

随机推荐

  1. 20155220 Exp2 后门原理与实践

    20155220 Exp2 后门原理与实践 1.Windows获得Linux Shell 在windows下,打开CMD,使用ipconfig指令查看本机IP 然后使用ncat.exe程序,ncat. ...

  2. XAMPP、PHPstorm和PHPcharm和Windows环境下Python搭建+暴力破解

    XAMPP的安装和使用 一.什么是XAMPP? XAMPP是最流行的PHP开发环境. XAMPP是完全免费且易于安装的Apache发行版,其中包含Apache.MariaDB.PHP和Perl. 类似 ...

  3. Luogu P2341 [HAOI2006]受欢迎的牛

    这道题应该也是经典的SCC题了吧 印象中不知道在在班里上课的时候在紫书,ACM竞赛的那些书上看到多少次(有点奇怪) 首先思路很明显,就是要找出有多少个点,以它们为起点可以遍历整个图 首先考虑一种情况, ...

  4. 使用pandas,7行代码实现朴素贝叶斯

    作者:hhh5460 大抵分成两类 一.离散的.标签化的数据 原文没有使用pandas,我使用pandas重新实现了朴素贝叶斯算法,看起来非常简洁.清爽. import pandas as pd '' ...

  5. CodeForces-1155D Beautiful Array

    Description You are given an array \(a\) consisting of \(n\) integers. Beauty of array is the maximu ...

  6. P3302 [SDOI2013]森林

    树上第k小是裸题,然后连边操作显然只能用启发式合并 连边之后重构小的部分,重构一遍主席树和倍增数组,水的一批(逃 #include<bits/stdc++.h> #define il in ...

  7. effective c++ 笔记 (30-31)

    //---------------------------15/04/17---------------------------- //#30   透彻了解inlineing的里里外外 { /* 1: ...

  8. 设计模式 笔记 组合模式 Composite

    //---------------------------15/04/16---------------------------- //Composite 组合模式----对象结构型模式 /* 1:意 ...

  9. 设计模式 笔记 外观模式 Facade

    //---------------------------15/04/16---------------------------- //Facade 外观模式-----对象结构型模式 /* 1:意图: ...

  10. Jmeter(十九)_ForEach控制器实现网页爬虫

    一直以来,爬虫似乎都是写代码去实现的,今天像大家介绍一下Jmeter如何实现一个网页爬虫! 龙渊阁测试开发家园 317765580 Jmeter的爬虫原理其实很简单,就是对网页提交一个请求,然后把返回 ...