根为r时x、y的公共祖先,就是lca(x,r),lca(x,y),lca(r,y)中深度最大的那一个,不要再在倍增的时候判来判去还判不对了...

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=3e5+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int eg[maxn*][],egh[maxn],ect;
int dfn[maxn][],tot;
int dep[maxn],fa[maxn][];
int N,M; inline void adeg(int a,int b){
eg[++ect][]=b;eg[ect][]=egh[a];egh[a]=ect;
} void dfs(int x){
for(int i=;fa[x][i]&&fa[fa[x][i]][i];i++){
fa[x][i+]=fa[fa[x][i]][i];
}
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(b==fa[x][]) continue;
dep[b]=dep[x]+,fa[b][]=x;
dfs(b);
}
} int lca(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
for(int i=log2(dep[x]-dep[y]+);i>=;i--){
if(fa[x][i]&&dep[fa[x][i]]>=dep[y])
x=fa[x][i];
}
if(x==y) return x;
for(int i=log2(dep[x]);i>=;i--){
if(fa[x][i]&&fa[y][i]&&fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
}
return fa[x][];
} int main(){
//freopen("","r",stdin);
int i;
N=rd(),M=rd();
for(i=;i<N;i++){
int a=rd(),b=rd();
adeg(a,b);adeg(b,a);
}
dep[]=;dfs();
for(i=;i<=M;i++){
int r=rd(),x=rd(),y=rd();
int a=lca(x,y),b=lca(x,r),c=lca(y,r);
int mm=max(dep[a],max(dep[b],dep[c]));
if(dep[a]==mm) printf("%d\n",a);
else if(dep[b]==mm) printf("%d\n",b);
else printf("%d\n",c);
}
return ;
}

suoi31 最近公共祖先2 (倍增lca)的更多相关文章

  1. 图论--最近公共祖先问题(LCA)模板

    最近公共祖先问题(LCA)是求一颗树上的某两点距离他们最近的公共祖先节点,由于树的特性,树上两点之间路径是唯一的,所以对于很多处理关于树的路径问题的时候为了得知树两点的间的路径,LCA是几乎最有效的解 ...

  2. [luogu3379]最近公共祖先(树上倍增求LCA)

    题意:求最近公共祖先. 解题关键:三种方法,1.st表 2.倍增法 3.tarjan 此次使用倍增模板(最好采用第一种,第二种纯粹是习惯) #include<cstdio> #includ ...

  3. 最近公共祖先问题(LCA)的几种实现方式

    LCA也是很经典的内容了,我这个蒟蒻居然今天才开始弄QAQ 我太弱啦! 照例先上定义——————转自维基百科 在图论和计算机科学中,最近公共祖先是指在一个树或者有向无环图中同时拥有v和w作为后代的最深 ...

  4. caioj 1236 最近公共祖先 树倍增算法模版 倍增

    [题目链接:http://caioj.cn/problem.php?id=1236][40eebe4d] 代码:(时间复杂度:nlogn) #include <iostream> #inc ...

  5. 【HIHOCODER 1067】最近公共祖先·二(LCA)

    描述 上上回说到,小Hi和小Ho用非常拙劣--或者说粗糙的手段山寨出了一个神奇的网站,这个网站可以计算出某两个人的所有共同祖先中辈分最低的一个是谁.远在美国的他们利用了一些奇妙的技术获得了国内许多人的 ...

  6. hihoCoder #1067 : 最近公共祖先·二 [ 离线LCA tarjan ]

    传送门: #1067 : 最近公共祖先·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上上回说到,小Hi和小Ho用非常拙劣——或者说粗糙的手段山寨出了一个神奇的网站 ...

  7. [HIHO1062] 最近公共祖先·一(lca, 并查集, 二分, 神trick)

    题目链接:http://hihocoder.com/problemset/problem/1062 题意裸,有个trick,导致我当年做的时候一直在WA... 那就是出现这种没有出现在关系中,但是依然 ...

  8. 最近公共祖先算法LCA笔记(树上倍增法)

    Update: 2019.7.15更新 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了. 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了 ...

  9. 最近公共祖先(LCA)问题

    目录 最近公共祖先 1.向上标记法 2.树上倍增法 3.Tarjan算法 最近公共祖先 定义:给定一颗有根树,若结点 z 既是 x 的祖先,也是 y 的祖先,则称 z 是 x,y 的公共祖先.在 x, ...

随机推荐

  1. 20155217《网络对抗》Exp05 MSF基础应用

    20155217<网络对抗>Exp05 MSF基础应用 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实践,如ms ...

  2. 列表生成式+过滤器(filter)+映射(map)+lambda总结

    这些都是python的特色,不仅强大,而且好用,配合起来使用更是无敌. 零.lambda lambda用于产生一个匿名表达式,组成部分为:lambda + ‘函数表达式’ ‘函数表达式’由一个冒号加上 ...

  3. vue.js 2.0实现的简单分页

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <title&g ...

  4. 【调试】Core Dump是什么?Linux下如何正确永久开启?

    [调试]Core Dump是什么?Linux下如何正确永久开启?

  5. 解决Git在添加ignore文件之前就提交了项目无法再过滤问题

    由于未添加ignore文件造成提交的项目很大(包含生成的二进制文件).所以我们可以将编译生成的文件进行过滤,避免添加到版本库中了. 首先为避免冲突需要先同步下远程仓库 $ git pull 在本地项目 ...

  6. Markdown打造高逼格博客

    这里首先假设读者你已经掌握了Markdown与GitHub的基本用法 如果不会, 请先自行百度或Google, 我目前还没写Markdown与GitHub的教程 看云只是一个推荐, 可以认为协助生成格 ...

  7. OpenGL学习(3)——Shader

    之前已经接触过Vertex Shader和Fragment Shader,这次学习如何编写Shader并封装成类. Shader源码主要有四部分: 版本声明 #version xxx core: 使用 ...

  8. 我的小游戏上线海外AppStore完整流程心得

    1,购买一台Mac或者用VMWare 安装Mac OS流程,笔者使用VMWare. 先安装Mac OS 10.13,教程,成功后不要着急安装vmtools, 首先更新系统至最新版,因为真机测试往往需要 ...

  9. PAT甲题题解-1040. Longest Symmetric String (25)-求最长回文子串

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789177.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  10. 右键添加使用Sublime打开

    网上教程大多是教你怎么改注册表,有点麻烦. 我根据教程改完之后导出来供大家使用,更方便快捷. Windows Registry Editor Version 5.00 [HKEY_CLASSES_RO ...