为什么你用不好Numpy的random函数?

在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,由于随机函数random的功能比较多,经常会混淆或记不住,下面我们一起来汇总学习下。

import numpy as np

1 numpy.random.rand()

numpy.random.rand(d0,d1,…,dn)

  • rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1
  • dn表格每个维度
  • 返回值为指定维度的array
np.random.rand(4,2)
array([[ 0.02173903,  0.44376568],
[ 0.25309942, 0.85259262],
[ 0.56465709, 0.95135013],
[ 0.14145746, 0.55389458]])
np.random.rand(4,3,2) # shape: 4*3*2
array([[[ 0.08256277,  0.11408276],
[ 0.11182496, 0.51452019],
[ 0.09731856, 0.18279204]], [[ 0.74637005, 0.76065562],
[ 0.32060311, 0.69410458],
[ 0.28890543, 0.68532579]], [[ 0.72110169, 0.52517524],
[ 0.32876607, 0.66632414],
[ 0.45762399, 0.49176764]], [[ 0.73886671, 0.81877121],
[ 0.03984658, 0.99454548],
[ 0.18205926, 0.99637823]]])

2 numpy.random.randn()

numpy.random.randn(d0,d1,…,dn)

  • randn函数返回一个或一组样本,具有标准正态分布。
  • dn表格每个维度
  • 返回值为指定维度的array
np.random.randn() # 当没有参数时,返回单个数据
-1.1241580894939212
np.random.randn(2,4)
array([[ 0.27795239, -2.57882503,  0.3817649 ,  1.42367345],
[-1.16724625, -0.22408299, 0.63006614, -0.41714538]])
np.random.randn(4,3,2)
array([[[ 1.27820764,  0.92479163],
[-0.15151257, 1.3428253 ],
[-1.30948998, 0.15493686]], [[-1.49645411, -0.27724089],
[ 0.71590275, 0.81377671],
[-0.71833341, 1.61637676]], [[ 0.52486563, -1.7345101 ],
[ 1.24456943, -0.10902915],
[ 1.27292735, -0.00926068]], [[ 0.88303 , 0.46116413],
[ 0.13305507, 2.44968809],
[-0.73132153, -0.88586716]]])

标准正态分布介绍

  • 标准正态分布—-standard normal distribution
  • 标准正态分布又称为u分布,是以0为均值、以1为标准差的正态分布,记为N(0,1)。

3 numpy.random.randint()

3.1 numpy.random.randint()

numpy.random.randint(low, high=None, size=None, dtype=’l’)

  • 返回随机整数,范围区间为[low,high),包含low,不包含high
  • 参数:low为最小值,high为最大值,size为数组维度大小,dtype为数据类型,默认的数据类型是np.int
  • high没有填写时,默认生成随机数的范围是[0,low)
np.random.randint(1,size=5) # 返回[0,1)之间的整数,所以只有0
array([0, 0, 0, 0, 0])
np.random.randint(1,5) # 返回1个[1,5)时间的随机整数
4
np.random.randint(-5,5,size=(2,2))
array([[ 2, -1],
[ 2, 0]])

3.2 numpy.random.random_integers

numpy.random.random_integers(low, high=None, size=None)

  • 返回随机整数,范围区间为[low,high],包含low和high
  • 参数:low为最小值,high为最大值,size为数组维度大小
  • high没有填写时,默认生成随机数的范围是[1,low]

该函数在最新的numpy版本中已被替代,建议使用randint函数

np.random.random_integers(1,size=5)
array([1, 1, 1, 1, 1])

4 生成[0,1)之间的浮点数

  • numpy.random.random_sample(size=None)
  • numpy.random.random(size=None)
  • numpy.random.ranf(size=None)
  • numpy.random.sample(size=None)
print('-----------random_sample--------------')
print(np.random.random_sample(size=(2,2)))
print('-----------random--------------')
print(np.random.random(size=(2,2)))
print('-----------ranf--------------')
print(np.random.ranf(size=(2,2)))
print('-----------sample--------------')
print(np.random.sample(size=(2,2)))
-----------random_sample--------------
[[ 0.34966859 0.85655008]
[ 0.16045328 0.87908218]]
-----------random--------------
[[ 0.25303772 0.45417512]
[ 0.76053763 0.12454433]]
-----------ranf--------------
[[ 0.0379055 0.51288667]
[ 0.71819639 0.97292903]]
-----------sample--------------
[[ 0.59942807 0.80211491]
[ 0.36233939 0.12607092]]

5 numpy.random.choice()

numpy.random.choice(a, size=None, replace=True, p=None)

  • 从给定的一维数组中生成随机数
  • 参数: a为一维数组类似数据或整数;size为数组维度;p为数组中的数据出现的概率
  • a为整数时,对应的一维数组为np.arange(a)
np.random.choice(5,3)
array([4, 1, 4])
np.random.choice(5, 3, replace=False)
# 当replace为False时,生成的随机数不能有重复的数值
array([0, 3, 1])
np.random.choice(5,size=(3,2))
array([[1, 0],
[4, 2],
[3, 3]])
demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']
np.random.choice(demo_list,size=(3,3))
array([['moto', 'iphone', 'xiaomi'],
['lenovo', 'xiaomi', 'xiaomi'],
['xiaomi', 'lenovo', 'iphone']],
dtype='<U7')
  • 参数p的长度与参数a的长度需要一致;
  • 参数p为概率,p里的数据之和应为1
demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']
np.random.choice(demo_list,size=(3,3), p=[0.1,0.6,0.1,0.1,0.1])
array([['sansumg', 'sansumg', 'sansumg'],
['sansumg', 'sansumg', 'sansumg'],
['sansumg', 'xiaomi', 'iphone']],
dtype='<U7')

6 numpy.random.seed()

  • np.random.seed()的作用:使得随机数据可预测。
  • 当我们设置相同的seed,每次生成的随机数相同。如果不设置seed,则每次会生成不同的随机数
np.random.seed(0)
np.random.rand(5)
array([ 0.5488135 ,  0.71518937,  0.60276338,  0.54488318,  0.4236548 ])
np.random.seed(1676)
np.random.rand(5)
array([ 0.39983389,  0.29426895,  0.89541728,  0.71807369,  0.3531823 ])
np.random.seed(1676)
np.random.rand(5)
array([ 0.39983389,  0.29426895,  0.89541728,  0.71807369,  0.3531823 ])

更多精彩内容请关注公众号:

“Python数据之道”

为什么你用不好Numpy的random函数?的更多相关文章

  1. numpy之random学习

    在机器学习中参数初始化需要进行随机生成,同时样本也需要随机生成,或者遵从一定规则随机生成,所以对随机生成的使用显得格外重要. 有的是生成随机数,有的是随机序列,有点是从随机序列中选择元素等等. 简单的 ...

  2. np.random.random()函数 参数用法以及numpy.random系列函数大全

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.r ...

  3. 【转】np.random.random()函数 参数用法以及numpy.random系列函数大全

    转自:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.random((1000, 20) ...

  4. numpy中的random函数

    1:rand rand(d0, d1, ..., dn)    Random values in a given shape.    Create an array of the given shap ...

  5. Chrome V8引擎系列随笔 (1):Math.Random()函数概览

    先让大家来看一幅图,这幅图是V8引擎4.7版本和4.9版本Math.Random()函数的值的分布图,我可以这么理解 .从下图中,也许你会认为这是个二维码?其实这幅图告诉我们一个道理,第二张图的点的分 ...

  6. numpy中random的使用

    import numpy as np a=np.random.random()#用于生成一个0到1的随机浮点数: 0 <= n < 1.0print(a)0.772000903322952 ...

  7. Python——Numpy的random子库

    NumPy的random子库 np.random.* np.random.rand() np.random.randn() np.random.randint() import numpy as np ...

  8. Python之Numpy库常用函数大全(含注释)

    前言:最近学习Python,才发现原来python里的各种库才是大头! 于是乎找了学习资料对Numpy库常用的函数进行总结,并带了注释.在这里分享给大家,对于库的学习,还是用到时候再查,没必要死记硬背 ...

  9. Python之Numpy库常用函数大全(含注释)(转)

    为收藏学习,特转载:https://blog.csdn.net/u011995719/article/details/71080987 前言:最近学习Python,才发现原来python里的各种库才是 ...

随机推荐

  1. Java调用HTTPS接口的证书配置

    首先需要获取到证书文件. 然后,将证书导入到本地: keytool -import -noprompt -trustcacerts -alias <AliasName> -file < ...

  2. NPM(Node Package Manager,Node包管理器)

    简介 每个Node应用都有一个包含该应用元数据的文件-package.json,包含应用名.版本号以及依赖等信息. 我们使用NPM从NPM库下载并安装第三方包. 所有下载的包以及其依赖都保存在node ...

  3. POJ 2593

    #include <iostream> #include <stdio.h> using namespace std; int cmp ( const void *a , co ...

  4. javascript数据结构与算法--高级排序算法(快速排序法,希尔排序法)

    javascript数据结构与算法--高级排序算法(快速排序法,希尔排序法) 一.快速排序算法 /* * 这个函数首先检查数组的长度是否为0.如果是,那么这个数组就不需要任何排序,函数直接返回. * ...

  5. [每天解决一问题系列 - 0001] Javascript apply和 call对比

    相同点: 每个函数都包含这两个原生的方法 他们两个的效果是一样的,用于在特定的作用域下执行函数,本质上是设置函数内this对象的值. 不同点: 传入的参数类型不同 . apply(函数作用域,arra ...

  6. python多线程-Semaphore(信号对象)

    Semaphore(value=1) Semaphore对象内部管理一个计数器,该计数器由每个acquire()调用递减,并由每个release()调用递增.计数器永远不会低于零,当acquire() ...

  7. (转)Python3之os模块

    原文:https://www.cnblogs.com/wang-yc/p/5623981.html 一:简介 os模块主要用于提供系统高级别的操作. 二:常用方法 1 2 3 4 5 6 7 8 9 ...

  8. hao643.com劫持(修改快捷方式跳转至hao123.com)

    >症状:所有浏览器快捷方式,都被加上尾巴,例如IE的:"C:\Program Files\Internet Explorer\iexplore.exe" http://hao ...

  9. JavaScript概念之screen/client/offset/scroll/inner/avail的width/left 分类: JavaScript HTML+CSS 2015-05-27 16:42 635人阅读 评论(0) 收藏

    原文地址:http://caibaojian.com/js-name.html JS中获取各种宽度和距离,常常让我们混淆,各种浏览器的不兼容让我们很头疼,现在就在说说js中有哪些宽度和距离. 1.名词 ...

  10. SVN Hooks的介绍及使用

    阅读此篇文章你可以: 对SVN Hooks有一定的了解 获取两个最常用的SVN Hooks案例 SVN hooks介绍 Hooks 钩子,主要实现的功能就是在特定事件发生之前或者之后自动执行事先定义好 ...