HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)
Proving Equivalences
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9296 Accepted Submission(s): 3281
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
4 0
3 2
1 2
1 3
2
m=0,没有边,那么至少添加n条边
sig=1,该图本来就是强连通图,则输出0
统计新图入度为0和出度为0的点的个数
输出最大值,就是我们至少需要添加的边的条数
缩点的原因:
强连通分量内部是互相可达的,我们只有把这些强连通分量缩成一个点,然后使得这些点构成的新图变成强连通图就可以了
所以问题得到关键是:
怎么使得新图变成强连通图(新图中不存在强连通分量,本身也不是强连通图)
有向图没有构成环的话,肯定存在链
把链头和链尾安装某个方向连接起来
链就变成环了
所以看看链头和链尾的个数就好(即出度为0和入度为0的点)
输出链头和链尾个数的最大值
因为如果连最小值条边的话,新图不一定能够变成强连通图
- #include<stdio.h>
- #include<iostream>
- #include<math.h>
- #include<string.h>
- #include<set>
- #include<map>
- #include<list>
- #include<math.h>
- #include<queue>
- #include<algorithm>
- using namespace std;
- typedef long long LL;
- #define INF 0x7fffffff
- int mon1[]= {,,,,,,,,,,,,};
- int mon2[]= {,,,,,,,,,,,,};
- int dir[][]= {{,},{,-},{,},{-,}};
- int getval()
- {
- int ret();
- char c;
- while((c=getchar())==' '||c=='\n'||c=='\r');
- ret=c-'';
- while((c=getchar())!=' '&&c!='\n'&&c!='\r')
- ret=ret*+c-'';
- return ret;
- }
- #define max_v 20005
- #define mem(a,x) memset(a,x,sizeof(a))
- int vis[max_v];
- int dfn[max_v];
- int low[max_v];
- int color[max_v];
- int stk[max_v];
- int indgree[max_v];
- int outdgree[max_v];
- vector<int> G[max_v];
- int n,m;
- int sig,cnt,sp;
- void init()
- {
- mem(indgree,);
- mem(outdgree,);
- mem(vis,);
- mem(dfn,);
- mem(low,);
- mem(color,);
- mem(stk,);
- for(int i=;i<=n;i++)
- G[i].clear();
- sig=;
- cnt=;
- sp=-;
- }
- void tarjan(int u)
- {
- vis[u]=;
- low[u]=dfn[u]=cnt++;
- stk[++sp]=u;
- for(int j=;j<G[u].size();j++)
- {
- int v=G[u][j];
- if(vis[v]==)
- tarjan(v);
- if(vis[v]==)
- low[u]=min(low[u],low[v]);
- }
- if(low[u]==dfn[u])
- {
- sig++;
- do
- {
- vis[stk[sp]]=-;
- color[stk[sp]]=sig;
- }while(stk[sp--]!=u);
- }
- }
- int main()
- {
- int t;
- int x,y;
- cin>>t;
- while(t--)
- {
- scanf("%d %d",&n,&m);
- if(m==)
- {
- printf("%d\n",n);
- continue;
- }
- init();
- for(int i=;i<=m;i++)
- {
- scanf("%d %d",&x,&y);
- if(x==y)
- continue;
- if(count(G[x].begin(),G[x].end(),y)==)
- G[x].push_back(y);
- }
- for(int i=;i<=n;i++)
- {
- if(vis[i]==)
- tarjan(i);
- }
- if(sig==)
- {
- printf("0\n");
- continue;
- }
- // printf("sig=%d\n",sig);
- for(int i=;i<=n;i++)
- {
- for(int j=;j<G[i].size();j++)
- {
- int v=G[i][j];
- if(color[i]!=color[v])
- {
- indgree[color[v]]++;
- outdgree[color[i]]++;
- }
- }
- }
- LL ans=,ans1=,ans2=;
- for(int i=;i<=sig;i++)
- {
- if(indgree[i]==)
- ans1++;
- if(outdgree[i]==)
- ans2++;
- }
- ans=max(ans1,ans2);
- printf("%d\n",ans);
- }
- return ;
- }
- /*
- 给你一个有向图,问你至少添加多少条边,使得该图变成一个强连通图
- 特判情况:
- m=0,没有边,那么至少添加n条边
- sig=1,该图本来就是强连通图,则输出0
- tarjan求强连通分量,同时染色缩点得到新图
- 统计新图入度为0和出度为0的点的个数
- 输出最大值,就是我们至少需要添加的边的条数
- 原因:
- 缩点的原因:
- 强连通分量内部是互相可达的,我们只有把这些强连通分量缩成一个点,然后使得这些点构成的新图变成强连通图就可以了
- 所以问题得到关键是:
- 怎么使得新图变成强连通图(新图中不存在强连通分量,本身也不是强连通图)
- 有向图没有构成环的话,肯定存在链
- 把链头和链尾安装某个方向连接起来
- 链就变成环了
- 所以看看链头和链尾的个数就好(即出度为0和入度为0的点)
- 输出链头和链尾个数的最大值
- 为什么是最大值?
- 因为如果连最小值条边的话,新图不一定能够变成强连通图
- */
HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)的更多相关文章
- 2767 Proving Equivalences 至少加几条边让全部图变成强连通模板题
#include<stdio.h> #include<string.h> #define N 21000 struct node { int u,v,next; }bian[N ...
- HDU 2767 Proving Equivalences (强联通)
pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...
- hdu 2767 Proving Equivalences
Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...
- HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)
Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...
- HDU 2767 Proving Equivalences (Tarjan)
Proving Equivalences Time Limit : 4000/2000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other ...
- hdu 2767 Proving Equivalences 强连通缩点
给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...
- hdu 2767 Proving Equivalences(tarjan缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...
- HDU 2767:Proving Equivalences(强连通)
题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...
- hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- js 下拉加载
// 下拉加载 var clientHeight = $(window).height() //当前可视的页面高度 console.log(clientHeight) //滚动条到页面底部 ...
- H5 页面下拉加载更多
1.html页面: <body onload="index_roll()"> ... </body> 2.js <script type=" ...
- 关于网站中Logo部分的写法
由于SEO对网页产生的影响,我们在写html的时候要注意写好三大要素:1.keywords 2.describtion 3.title 我们在写像h1 h2 h3 这种标题的时候尽量要带有网站的名字 ...
- tinyint、smallint、bigint、int 区别
1byte=8bit [tinyint] 从 0 到 255 的整型数据.存储大小为 1 字节.如果设置为UNSIGNED类型,只能存储从0到255的整数,不能用来储存负数. [smallint] ...
- 数据库查询字段为null 时,返回0
oracle select nvl(字段名,0) from 表名; sqlserver select isnull(字段名,0) from 表名; mysql select ifnull(字段名,0) ...
- jsp 发布war 包到Tomcat
1.将项目打包成war,打包过程这里不做赘述 2.在linux或者windows下安装xmapp 3.打开Tomcat下conf/server.xml,在host下添加一行 <Co ...
- Python之生成器(generator)和迭代器(Iterator)
generator 生成器generator:一边循环一边计算的机制. 生成器是一个特殊的程序,可以被用于控制循环的迭代行为.python中的生成器是迭代器的一种,使用yield返回值函数,每次调用y ...
- 记一次服务器迁移后的nginx启动问题
背景 服务器A准备下线,故直接将上面的所有应用/资料打包迁移到服务器B.包括搭建的nginx,迁移到B服务器后,楼主偷懒,就想着直接./nginx启动,过程遇到如下问题. ./nginx ./ngin ...
- Node.js+Ajax实现物流小工具
半年过去了,好像什么也没干,好像什么也干了. 最近在网易云课堂上看到了这个课程,觉得很有意思,就跟着课程做了一遍,课程地址:http://study.163.com/course/courseMain ...
- C#多线程的用法6-线程间的协作Mutex
Mutex在线程协作的过程中起互斥的左右,效果与线程锁类似. /// <summary> /// 多线程协作-Mutex /// </summary> private stat ...