Power of Matrix(uva11149+矩阵快速幂)
Power of Matrix
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu
System Crawler (2015-03-15)
Description

Problem B : Power of Matrix |
Time limit: 10 seconds |
Consider an n-by-n matrix A. We define Ak = A * A * ... * A (k times). Here, * denotes the usual matrix multiplication.
You are to write a program that computes the matrix A + A2 + A3 + ... + Ak.
Example
Suppose A = . Then A2 =
=
, thus:
Such computation has various applications. For instance, the above example actually counts all the paths in the following graph:
Input
Input consists of no more than 20 test cases. The first line for each case contains two positive integers n (≤ 40) and k (≤ 1000000). This is followed by n lines, each containing n non-negative integers, giving the matrix A.
Input is terminated by a case where n = 0. This case need NOT be processed.
Output
For each case, your program should compute the matrix A + A2 + A3 + ... + Ak. Since the values may be very large, you only need to print their last digit. Print a blank line after each case.
Sample Input
3 2
0 2 0
0 0 2
0 0 0
0 0
Sample Output
0 2 4
0 0 2
0 0 0
首先我们来想一下计算A+A^2+A^3...+A^k。
如果A=2,k=6。那你怎么算
2+22+23+24+25+26 = ?= (2+22+23)*(1+23)
如果A=2,k=7。那你怎么算
2+22+23+24+25+26+27 = ?= (2+22+23)*(1+23)+27
so....同理:
当k是偶数,A+A^2+A^3...+A^k=(E+A^(k/2))*(A+A^2...+A^(k/2))。
当k是奇数,A+A^2+A^3...+A^k=(E+A^(k/2))*(A+A^2...+A^(k/2))+A^k。
转载请注明出处:寻找&星空の孩子
题目链接:UVA 11149
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL __int64
#define mmax 45 struct matrix
{
int mat[mmax][mmax];
}; int N; matrix multiply(matrix a,matrix b)
{
matrix c;
memset(c.mat,,sizeof(c.mat));
for(int i=; i<N; i++)
{
for(int j=; j<N; j++)
{
if(a.mat[i][j]==)continue;
for(int k=; k<N; k++)
{
if(b.mat[j][k]==)continue;
c.mat[i][k]=(c.mat[i][k]+a.mat[i][j]*b.mat[j][k])%; }
}
}
return c;
} matrix quickmod(matrix a,int n)
{
matrix res;
for(int i=; i<N; i++) //单位阵
for(int j=; j<N; j++)
res.mat[i][j]=(i==j);
while(n)
{
if(n&)
res=multiply(a,res);
a=multiply(a,a);
n>>=;
}
return res;
}
matrix add (matrix a,matrix b)
{
matrix ret;
for(int i=; i<N; i++)
for(int j=; j<N; j++)
ret.mat[i][j]=(a.mat[i][j]+b.mat[i][j])%;
return ret;
}
matrix solve(matrix a,int k)
{
if(k==) return a;
matrix ans;
for(int i=; i<N; i++)
for(int j=; j<N; j++)
ans.mat[i][j]=(i==j);
if(k==) return ans;
ans=multiply((add(quickmod(a,(k>>)),ans)),solve(a,(k>>)));
if(k%) ans=add(quickmod(a,k),ans);
return ans;
} int main()
{
int k;
while(scanf("%d%d",&N,&k)!=EOF)
{
if(!N)break;
matrix ans;
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
int temp;
scanf("%d",&temp);
ans.mat[i][j]=temp%;
}
} ans=solve(ans,k); for(int i=;i<N;i++)
{
for(int j=;j<N-;j++)
{
printf("%d ",ans.mat[i][j]);
}
printf("%d\n",ans.mat[i][N-]);
}
printf("\n");
}
return ;
}
Power of Matrix(uva11149+矩阵快速幂)的更多相关文章
- POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K To ...
- hdu4965 Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)
Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...
- HDU 4965 Fast Matrix Calculation 矩阵快速幂
题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...
- bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希
题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...
- UVA-11149 Power of Matrix(矩阵二分幂)
题目大意:给一个n阶方阵,求A1+A2+A3+......Ak. 题目分析:令F(k)=A1+A2+A3+......Ak.当k为偶数时,F(k)=F(k/2)*(E+Ak/2),k为奇数时,F(k) ...
- Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- UVA11149 矩阵快速幂
首先我们来想一下计算A+A^2+A^3...+A^k. 如果A=2,k=6.那你怎么算 2+22+23+24+25+26 = ?= (2+22+23)*(1+23) 如果A=2,k=7.那你怎么算 2 ...
- uva11149矩阵快速幂
求A+A^1+...+A^n 转换一下变成|A E|,的n+1次方就是|A^(n+1) A^n+...+A+E| |0 E| | 0 ...
随机推荐
- UWP 响应键盘组合快捷键
方法1:响应Ctrl+?快捷键 首先在load事件或者keydown事件内注册事件 public MainPage() { this.InitializeComponent(); // Registe ...
- #loj3089 [BJOI2019]奥术神杖
卡精度好题 最关键的一步是几何平均数的\(ln\)等于所有数字取\(ln\)后的算术平均值 那么现在就变成了一个很裸的01分数规划问题,一个通用的思路就是二分答案 现在来考虑二分答案的底层怎么写 把所 ...
- Mongodb--基础(连接,增删改查,数据类型)
mongodb 日常启动命令 mongod --dbpath D:\data\db 一.启动,连接 mongodb是一个非关系型数据库 1. 启动MongoDB服务: 安装时我并没有将mongodb服 ...
- 防止sql注入的小函数 以及一些小验证
function test_input($data) { $data = trim($data); $data = stripslashes($data); $data = htmlspecialch ...
- git如何忽略已经加入版本控制的文件
git移除已经追踪的文件 有时候新增一个文件,会自动追加到git的版本控制当中,但是又不想提交到仓库.可以按照下面的步骤: git status 查看管理状态: ml-py git:(master) ...
- Linux巩固记录(5) hadoop 2.7.4下自己编译代码并运行MapReduce程序
程序代码为 ~\hadoop-2.7.4\share\hadoop\mapreduce\sources\hadoop-mapreduce-examples-2.7.4-sources\org\apac ...
- Django中安装搜索引擎方法。
全文检索 全文检索不同于特定字段的模糊查询,使用全文检索的效率更高,并且能够对于中文进行分词处理. haystack:全文检索的框架,支持whoosh.solr.Xapian.Elasticsearc ...
- linux安装mysql数据库和简单配置
- 再谈高性能Web服务器,MemoryPool的作用
在以往使用c#实现scoket服务器中,通常遇到一个问题就是内存占用高,GC次数频繁,导致处理能力直线下降 其主要原因是在处理socket请求时,大量的申请,复制内存,为了解决这个问题,NET Cor ...
- (转)python3-staticmethod与classmethod
原文:https://blog.csdn.net/youngbit007/article/details/68957848 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blo ...