Power of Matrix

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Appoint description: 
System Crawler  (2015-03-15)

Description

 

Problem B : Power of Matrix

Time limit: 10 seconds

Consider an n-by-n matrix A. We define Ak = A * A * ... * A (k times). Here, * denotes the usual matrix multiplication.

You are to write a program that computes the matrix A + A2 + A3 + ... + Ak.

Example

Suppose A = . Then A2 =  = , thus:

Such computation has various applications. For instance, the above example actually counts all the paths in the following graph:

Input

Input consists of no more than 20 test cases. The first line for each case contains two positive integers n (≤ 40) and k (≤ 1000000). This is followed by n lines, each containing n non-negative integers, giving the matrix A.

Input is terminated by a case where n = 0. This case need NOT be processed.

Output

For each case, your program should compute the matrix A + A2 + A3 + ... + Ak. Since the values may be very large, you only need to print their last digit. Print a blank line after each case.

Sample Input

3 2
0 2 0
0 0 2
0 0 0
0 0

Sample Output

0 2 4
0 0 2
0 0 0

首先我们来想一下计算A+A^2+A^3...+A^k。

如果A=2,k=6。那你怎么算

2+22+23+24+25+26 = ?= (2+22+23)*(1+23)

如果A=2,k=7。那你怎么算

2+22+23+24+25+26+2= ?= (2+22+23)*(1+23)+27

so....同理:

当k是偶数,A+A^2+A^3...+A^k=(E+A^(k/2))*(A+A^2...+A^(k/2))。

当k是奇数,A+A^2+A^3...+A^k=(E+A^(k/2))*(A+A^2...+A^(k/2))+A^k。

转载请注明出处:寻找&星空の孩子

题目链接:UVA 11149

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL __int64
#define mmax 45 struct matrix
{
int mat[mmax][mmax];
}; int N; matrix multiply(matrix a,matrix b)
{
matrix c;
memset(c.mat,,sizeof(c.mat));
for(int i=; i<N; i++)
{
for(int j=; j<N; j++)
{
if(a.mat[i][j]==)continue;
for(int k=; k<N; k++)
{
if(b.mat[j][k]==)continue;
c.mat[i][k]=(c.mat[i][k]+a.mat[i][j]*b.mat[j][k])%; }
}
}
return c;
} matrix quickmod(matrix a,int n)
{
matrix res;
for(int i=; i<N; i++) //单位阵
for(int j=; j<N; j++)
res.mat[i][j]=(i==j);
while(n)
{
if(n&)
res=multiply(a,res);
a=multiply(a,a);
n>>=;
}
return res;
}
matrix add (matrix a,matrix b)
{
matrix ret;
for(int i=; i<N; i++)
for(int j=; j<N; j++)
ret.mat[i][j]=(a.mat[i][j]+b.mat[i][j])%;
return ret;
}
matrix solve(matrix a,int k)
{
if(k==) return a;
matrix ans;
for(int i=; i<N; i++)
for(int j=; j<N; j++)
ans.mat[i][j]=(i==j);
if(k==) return ans;
ans=multiply((add(quickmod(a,(k>>)),ans)),solve(a,(k>>)));
if(k%) ans=add(quickmod(a,k),ans);
return ans;
} int main()
{
int k;
while(scanf("%d%d",&N,&k)!=EOF)
{
if(!N)break;
matrix ans;
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
int temp;
scanf("%d",&temp);
ans.mat[i][j]=temp%;
}
} ans=solve(ans,k); for(int i=;i<N;i++)
{
for(int j=;j<N-;j++)
{
printf("%d ",ans.mat[i][j]);
}
printf("%d\n",ans.mat[i][N-]);
}
printf("\n");
}
return ;
}

Power of Matrix(uva11149+矩阵快速幂)的更多相关文章

  1. POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】

    任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K To ...

  2. hdu4965 Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...

  3. ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)

    Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...

  4. HDU 4965 Fast Matrix Calculation 矩阵快速幂

    题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...

  5. bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希

    题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...

  6. UVA-11149 Power of Matrix(矩阵二分幂)

    题目大意:给一个n阶方阵,求A1+A2+A3+......Ak. 题目分析:令F(k)=A1+A2+A3+......Ak.当k为偶数时,F(k)=F(k/2)*(E+Ak/2),k为奇数时,F(k) ...

  7. Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...

  8. UVA11149 矩阵快速幂

    首先我们来想一下计算A+A^2+A^3...+A^k. 如果A=2,k=6.那你怎么算 2+22+23+24+25+26 = ?= (2+22+23)*(1+23) 如果A=2,k=7.那你怎么算 2 ...

  9. uva11149矩阵快速幂

    求A+A^1+...+A^n 转换一下变成|A  E|,的n+1次方就是|A^(n+1)  A^n+...+A+E| |0  E|                       |    0       ...

随机推荐

  1. 在Asp.Net MVC中利用快递100接口实现订阅物流轨迹功能

    前言 分享一篇关于在电商系统中同步物流轨迹到本地服务器的文章,当前方案使用了快递100做为数据来源接口,这个接口是收费的,不过提供的功能还是非常强大的,有专门的售后维护团队.也有免费的方案,类似于快递 ...

  2. MVC 5使用ViewData(模型)显示数据

    看过此篇<MVC 5使用ViewData(对象)显示数据>http://www.cnblogs.com/insus/p/3377178.html 都明白在控制器使用ViewData(obj ...

  3. 使用Squid部署代理服务

    Squid是Linux系统中最为流行的一款高性能代理服务软件,通常用作Web网站的前置缓存服务,能够代替用户向网站服务器请求页面数据并进行缓存.简单来说,Squid服务程序会按照收到的用户请求向网站源 ...

  4. 多个JDK下TOMCAT运行设置

    当OS中含有多个JDK版本时,设置TOMCAT下JAVA环境变量信息的办法: 1.在setclasspath.bat或者setclasspath.sh下设置 set JAVA_HOME=d:\java ...

  5. MySQL修改root密码的方法总结

    方法1: 用SET PASSWORD命令 mysql -u root mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpass ...

  6. zookeeper+kafka集群的安装部署

    准备工作 上传 zookeeper-3.4.6.tar.gz.scala-2.11.4.tgz.kafka_2.9.2-0.8.1.1.tgz.slf4j-1.7.6.zip 至/usr/local目 ...

  7. odoo开发笔记 -- wkhtmltox打印不显示中文 --ubuntu字体安装

    wkhtmltox 是一个开源的将网页内容转换成PDF的软件包,常嵌套在网页页面里边做打印功能. 以微软雅黑字体为例(其他的宋体.黑体等点阵字体都一样的),我们的雅黑字体文件是:Yahei.ttf(放 ...

  8. 再谈高性能Web服务器,MemoryPool的作用

    在以往使用c#实现scoket服务器中,通常遇到一个问题就是内存占用高,GC次数频繁,导致处理能力直线下降 其主要原因是在处理socket请求时,大量的申请,复制内存,为了解决这个问题,NET Cor ...

  9. CentOS安装与配置Powerline插件

    Powerline powerline 可用于美化终端和vim编辑器的插件,它是Python开发的,为多个应用(bash,zsh,tmux等)提供statusline. 下面我们在CentOS上为vi ...

  10. POJ 2083 Fractal 分形题目

    这两天自学了一线算法导论里分治策略的内容,秉着只有真正投入投入编程,才能更好的理解一种算法的思想的想法,兴致勃勃地找一些入门的题来学习. 搜了一下最后把目光锁定在了Poj fractal这一个题上.以 ...