import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os mnist = input_data.read_data_sets('MNIST_data', one_hot=True) class MNISTModel(object):
def __init__(self, lr, batch_size, iter_num):
self.lr = lr
self.batch_size = batch_size
self.iter_num = iter_num
# 定义模型结构
# 输入张量,这里还没有数据,先占个地方,所以叫“placeholder”
self.x = tf.placeholder(tf.float32, [None, 784]) # 图像是28*28的大小
self.y = tf.placeholder(tf.float32, [None, 10]) # 输出是0-9的one-hot向量
self.h = tf.layers.dense(self.x, 100, activation=tf.nn.relu, use_bias=True, kernel_initializer=tf.truncated_normal_initializer) # 一个全连接层
self.y_ = tf.layers.dense(self.h, 10, use_bias=True, kernel_initializer=tf.truncated_normal_initializer) # 全连接层 # 使用交叉熵损失函数
self.loss = tf.losses.softmax_cross_entropy(self.y, self.y_)
self.optimizer = tf.train.AdamOptimizer()
self.train_step = self.optimizer.minimize(self.loss) # 用于模型训练
self.correct_prediction = tf.equal(tf.argmax(self.y, axis=1), tf.argmax(self.y_, axis=1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) # 用于保存训练好的模型
self.saver = tf.train.Saver() def train(self):
with tf.Session() as sess: # 打开一个会话。可以想象成浏览器打开一个标签页一样,直观地理解一下
sess.run(tf.global_variables_initializer()) # 先初始化所有变量。
for i in range(self.iter_num):
batch_x, batch_y = mnist.train.next_batch(self.batch_size) # 读取一批数据
loss, _ = sess.run([self.loss, self.train_step], feed_dict={self.x: batch_x, self.y: batch_y}) # 每调用一次sess.run,就像拧开水管一样,所有self.loss和self.train_step涉及到的运算都会被调用一次。
if i%1000 == 0:
train_accuracy = sess.run(self.accuracy, feed_dict={self.x: batch_x, self.y: batch_y}) # 把训练集数据装填进去
test_x, test_y = mnist.test.next_batch(self.batch_size)
test_accuracy = sess.run(self.accuracy, feed_dict={self.x: test_x, self.y: test_y}) # 把测试集数据装填进去
print( 'iter\t%i\tloss\t%f\ttrain_accuracy\t%f\ttest_accuracy\t%f' % (i,loss,train_accuracy,test_accuracy))
self.saver.save(sess, 'model/mnistModel') # 保存模型 def test(self):
with tf.Session() as sess:
self.saver.restore(sess, 'model/mnistModel')
Accuracy = []
for i in range(150):
test_x, test_y = mnist.test.next_batch(self.batch_size)
test_accuracy = sess.run(self.accuracy, feed_dict={self.x: test_x, self.y: test_y})
Accuracy.append(test_accuracy)
print ('==' * 15)
print ('Test Accuracy: ', np.mean(np.array(Accuracy))) model = MNISTModel(0.001, 64, 40000) # 学习率为0.001,每批传入64张图,训练40000次
model.train() # 训练模型
model.test() #测试模型

基于多层感知机的手写数字识别(Tensorflow实现)的更多相关文章

  1. 基于Numpy的神经网络+手写数字识别

    基于Numpy的神经网络+手写数字识别 本文代码来自Tariq Rashid所著<Python神经网络编程> 代码分为三个部分,框架如下所示: # neural network class ...

  2. Mnist手写数字识别 Tensorflow

    Mnist手写数字识别 Tensorflow 任务目标 了解mnist数据集 搭建和测试模型 编辑环境 操作系统:Win10 python版本:3.6 集成开发环境:pycharm tensorflo ...

  3. [Python]基于CNN的MNIST手写数字识别

    目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...

  4. 基于卷积神经网络的手写数字识别分类(Tensorflow)

    import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...

  5. 吴裕雄--天生自然python机器学习:基于支持向量机SVM的手写数字识别

    from numpy import * def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i ...

  6. MNIST手写数字识别 Tensorflow实现

    def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 1. strides在官方定义中是一 ...

  7. Keras mlp 手写数字识别示例

    #基于mnist数据集的手写数字识别 #构造了三层全连接层组成的多层感知机,最后一层为输出层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: import keras from ...

  8. 【TensorFlow-windows】(四) CNN(卷积神经网络)进行手写数字识别(mnist)

    主要内容: 1.基于CNN的mnist手写数字识别(详细代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64. ...

  9. Keras cnn 手写数字识别示例

    #基于mnist数据集的手写数字识别 #构造了cnn网络拟合识别函数,前两层为卷积层,第三层为池化层,第四层为Flatten层,最后两层为全连接层 #基于Keras 2.1.1 Tensorflow ...

随机推荐

  1. Ajax登录用户名密码

    <script src="http://code.jquery.com/jquery-latest.js"></script>#引入jQuery#当点击函数 ...

  2. day03_雷神_文件操作

    day03 上周回顾_问题总结: 地址值: li = [] name = ['name','price','count'] dic = {} #如果这里定义空列表,后边的dic[name[i]] = ...

  3. Oracle EBS登陆后,直接打开某个特定Form/Page

    http://blog.csdn.net/pan_tian/article/details/8169339 有一个小技巧,Oracle EBS登陆后可以绕过职责和功能的选择过程,就可以直接打开某个特定 ...

  4. cxGrid动态设置单元格对齐方式

    cxGrid动态设置单元格对齐方式 2013年10月08日 00:52:49 踏雪无痕 阅读数:2150更多 个人分类: cxGrid   判断: //uses cxTextEditcxGrid1DB ...

  5. Android-HttpClient-Get与Post请求登录功能

    HttpClient 是org.apache.http.* 包中的: 第一种方式使用httpclient-*.jar (需要在网上去下载httpclient-*.jar包) 把httpclient-4 ...

  6. [Leet code 2]Two Sum

    1 题目 You are given two linked lists representing two non-negative numbers. The digits are stored in ...

  7. [Proposal]Tank Battle——Infinite

    Tank Battle——Infinite 把经典的坦克大战扩展到一个“无限”大的2D地图上.支持“全世界”的玩家同时在线玩. 游戏模式当然要做成全新的.增加玩家之间的交互,但又不较强的依赖于实时的通 ...

  8. 探索基于.NET下实现一句话木马之asmx篇

    0x01 前言 上篇介绍了一般处理程序(ashx)的工作原理以及实现一句话木马的过程,今天接着介绍Web Service程序 (asmx)下的工作原理和如何实现一句话木马,当然介绍之前笔者找到了一款a ...

  9. FastReport使用方法(C/S版)

    前言 这两天群里一直有群友问一些关于FastReport的问题,结合他们的问题,在这里做一个整理,有不明白的可以加 FastReport 交流群 群   号:554714044 工具 VS2017 + ...

  10. IE6下javascript:void(0)不可用的解决

    <a href="javascript:void(0)" class="inp_sear_a" onclick="doSubmit();&quo ...