寻找cost函数最小值:梯度下降与最小二乘法
Editted by MarkDown
寻找cost函数最小值:梯度下降与最小二乘法
参考:最小二乘法小结--刘建平
背景:
目标函数 = Σ(观测值-理论值)2
观测值就是我们的多组样本,理论值就是我们的假设拟合函数。目标函数也就是在机器学习中常说的损失函数,我们的目标是得到使目标函数最小化时候的拟合函数的模型。
最小二乘法的局限性和适用场景
从上面可以看出,最小二乘法适用简洁高效,比梯度下降这样的迭代法似乎方便很多。但是这里我们就聊聊最小二乘法的局限性。
首先,最小二乘法需要计算\(\mathbf{X}^\mathbf{T}\mathbf{X}\)的逆矩阵,有可能它的逆矩阵不存在,这样就没有办法直接用最小二乘法了,此时梯度下降法仍然可以使用。当然,我们可以通过对样本数据进行整理,去掉冗余特征。让\(\mathbf{X}^\mathbf{T}\mathbf{X}\)的行列式不为0,然后继续使用最小二乘法。
第二,当样本特征n非常的大的时候,计算\(\mathbf{X}^\mathbf{T}\mathbf{X}\)的逆矩阵是一个非常耗时的工作(nxn的矩阵求逆),甚至不可行。此时以梯度下降为代表的迭代法仍然可以使用。那这个n到底多大就不适合最小二乘法呢?如果你没有很多的分布式大数据计算资源,建议超过10000个特征就用迭代法吧。或者通过主成分分析降低特征的维度后再用最小二乘法。
第三,如果拟合函数不是线性的,这时无法使用最小二乘法,需要通过一些技巧转化为线性才能使用,此时梯度下降仍然可以用。
第四,讲一些特殊情况。当样本量m很少,小于特征数n的时候,这时拟合方程是欠定的,常用的优化方法都无法去拟合数据。当样本量m等于特征说n的时候,用方程组求解就可以了。当m大于n时,拟合方程是超定的,也就是我们常用与最小二乘法的场景了。
寻找cost函数最小值:梯度下降与最小二乘法的更多相关文章
- Logistic回归Cost函数和J(θ)的推导(二)----梯度下降算法求解最小值
前言 在上一篇随笔里,我们讲了Logistic回归cost函数的推导过程.接下来的算法求解使用如下的cost函数形式: 简单回顾一下几个变量的含义: 表1 cost函数解释 x(i) 每个样本数据点在 ...
- 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...
- 梯度下降(Gradient Descent)小结
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...
- 梯度下降(Gradient Descent)
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...
- ML(附录1)——梯度下降
梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以).在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的 ...
- [ch02-03] 梯度下降
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 2.3 梯度下降 2.3.1 从自然现象中理解梯度下降 ...
- [AI]神经网络章2 神经网络中反向传播与梯度下降的基本概念
反向传播和梯度下降这两个词,第一眼看上去似懂非懂,不明觉厉.这两个概念是整个神经网络中的重要组成部分,是和误差函数/损失函数的概念分不开的. 神经网络训练的最基本的思想就是:先“蒙”一个结果,我们叫预 ...
- Proximal Gradient Descent for L1 Regularization(近端梯度下降求解L1正则化问题)
假设我们要求解以下的最小化问题: $min_xf(x)$ 如果$f(x)$可导,那么一个简单的方法是使用Gradient Descent (GD)方法,也即使用以下的式子进行迭代求解: $x_{k+1 ...
- 多变量线性回归时使用梯度下降(Gradient Descent)求最小值的注意事项
梯度下降是回归问题中求cost function最小值的有效方法,对大数据量的训练集而言,其效果要 好于非迭代的normal equation方法. 在将其用于多变量回归时,有两个问题要注意,否则会导 ...
随机推荐
- AXI Quad SPI
AXI Quad SPI 信息来源
- Linux From Scratch [3]
1. 为了编译glibc,我们需要kernel header. make mrproper # clean kernel tree make INSTALL_HDR_PATH=dest headers ...
- DS树+图综合练习--带权路径和
题目描述 计算一棵二叉树的带权路径总和,即求赫夫曼树的带权路径和. 已知一棵二叉树的叶子权值,该二叉树的带权案路径和APL等于叶子权值乘于根节点到叶子的分支数,然后求总和.如下图中,叶子都用大写字母表 ...
- googletest--Test Fixture
前面博客中我们在单元测试之前会做一些变量初始化等工作,而同一个testcase的不同test之间往往会有一些初始化工作是相同的.我们不想做多余的重复的工作,当然同时也不想设置全局变量. 这个时候我们可 ...
- TweenMax 参考
http://bbs.9ria.com/thread-214959-1-1.html TweenMax 可能是很多人都用的,包括我 但 是最近发现大量的运用就总会产生这样或那样的"怪事&qu ...
- Java学习——方法中传递参数分简单类型与复杂类型(引用类型)编程计算100+98+96+。。。+4+2+1的值,用递归方法实现
package hello; public class digui { public static void main(String[] args) { // TODO Auto-generated ...
- Java-Runoob-高级教程-实例-方法:01. Java 实例 – 方法重载
ylbtech-Java-Runoob-高级教程-实例-方法:01. Java 实例 – 方法重载 1.返回顶部 1. Java 实例 - 方法重载 Java 实例 先来看下方法重载(Overloa ...
- 关于oracle的sqlplus显示不完全的修改方法
这样的显示看起来很痛苦 需要换行的时候没有进行换行,不需要换行的时候却进行了换行 参考的博客地址 https://blog.csdn.net/pan_tian/article/details/8059 ...
- Linux下设置固定IP的方法
本文转自http://blog.163.com/liulina_517@126/blog/static/3766198320118231431594/ linux系统安装完,以后通过命令模式配置网卡I ...
- [UE4]Reliable,可靠性
1.Reliable,不会丢失,立刻发出,适合重要的事件 2.Unreliable,可能会丢失,适合表现相关的和不重要的事件 3.全部的远程调用都使用Reliable,可能会造成网络拥堵 4.尽量避免 ...