class lightgbm.LGBMClassifier(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=10, max_bin=255, subsample_for_bin=200000, objective=None, min_split_gain=0.0, min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=1, colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=-1, silent=True, **kwargs)

boosting_type
default="gbdt"

"gbdt":Gradient Boosting Decision Tree

"dart":Dropouts meet Multiple Additive Regression Trees

"goss":Gradient-based One-Side Sampling

"rf": Random Forest

 
num_leaves  (intoptional (default=31)) 每个基学习器的最大叶子节点 <=2^max_depth
max_depth  (intoptional (default=-1)) 每个基学习器的最大深度, -1 means no limit 当模型过拟合,首先降低max_depth 
learning_rate (floatoptional (default=0.1))  Boosting learning rate  
n_estimators (intoptional (default=10))   基学习器的数量  
max_bin  (intoptional (default=255)) feature将存入的bin的最大数量,应该是直方图的k值  
subsample_for_bin  (intoptional (default=50000)) Number of samples for constructing bins  
objective  (stringcallable or Noneoptional (default=None))

default:

‘regression’ for LGBMRegressor,

‘binary’ or ‘multiclass’ for LGBMClassifier,

‘lambdarank’ for LGBMRanker.

 
min_split_gain  (floatoptional (default=0.)) 树的叶子节点上进行进一步划分所需的最小损失减少  
min_child_weight   (floatoptional (default=1e-3))
Minimum sum of instance weight(hessian) needed in a child(leaf)

 
min_child_samples 
(intoptional (default=20) 叶子节点具有的最小记录数  
subsample 
(floatoptional (default=1.) 训练时采样一定比例的数据  
subsample_freq  (intoptional (default=1)) Frequence of subsample, <=0 means no enable  
colsample_bytree 
(floatoptional (default=1.) Subsample ratio of columns when constructing each tree  
reg_alpha
(floatoptional (default=0.))  L1 regularization term on weights  

reg_lambda

(floatoptional (default=0.)) L2 regularization term on weights  

random_state

(int or Noneoptional (default=None)    
silent (booloptional (default=True))    
n_jobs  (intoptional (default=-1))    

          




######################################################################################################

下表对应了Faster Spread,better accuracy,over-fitting三种目的时,可以调整的参数:

########################################################################################### 

类的属性:

n_features_ int  特征的数量
classes_ rray of shape = [n_classes]  类标签数组(只针对分类问题)
n_classes_ int  类别数量   (只针对分类问题)
best_score_ dict or None  最佳拟合模型得分
best_iteration_ int or None  如果已经指定了early_stopping_rounds,则拟合模型的最佳迭代次数
objective_ string or callable  拟合模型时的具体目标
booster_ Booster 这个模型的Booster
evals_result_ dict or None  如果已经指定了early_stopping_rounds,则评估结果
feature_importances_ array of shape = [n_features] 特征的重要性

###########################################################################################

类的方法: 

fit(X, y, sample_weight=None, init_score=None, eval_set=None, eval_names=None, eval_sample_weight=None, eval_init_score=None, eval_metric='logloss', early_stopping_rounds=None, verbose=True, feature_name='auto', categorical_feature='auto', callbacks=None)
X array-like or sparse matrix of shape = [n_samplesn_features] 特征矩阵
y array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression)
sample_weight  array-like of shape = [n_samples] or Noneoptional (default=None)) 样本权重,可以采用np.where设置
init_score array-like of shape = [n_samples] or Noneoptional (default=None)) Init score of training data
group array-like of shape = [n_samples] or Noneoptional (default=None) Group data of training data.
eval_set  list or Noneoptional (default=None)  A list of (X, y) tuple pairs to use as a validation sets for early-stopping
eval_names  list of strings or Noneoptional (default=None) Names of eval_set
eval_sample_weight  list of arrays or Noneoptional (default=None) Weights of eval data
eval_init_score  list of arrays or Noneoptional (default=None)  Init score of eval data
eval_group list of arrays or Noneoptional (default=None)  Group data of eval data
eval_metric stringlist of stringscallable or Noneoptional (default="logloss")  "mae","mse",...
early_stopping_rounds int or Noneoptional (default=None)  一定rounds,即停止迭代
verbose  booloptional (default=True)  
feature_name  list of strings or 'auto'optional (default="auto") If ‘auto’ and data is pandas DataFrame, data columns names are used
categorical_feature  list of strings or int, or 'auto'optional (default="auto") If ‘auto’ and data is pandas DataFrame, pandas categorical columns are used
callbacks list of callback functions or Noneoptional (default=None)  




###############################################################################################
 predict_proba(X, raw_score=False, num_iteration=0)
X  array-like or sparse matrix of shape = [n_samplesn_features] Input features matrix
raw_score booloptional (default=False) Whether to predict raw scores
num_iteration intoptional (default=0)  Limit number of iterations in the prediction; defaults to 0 (use all trees).
Returns predicted_probability  The predicted probability for each class for each sample.
Return type array-like of shape = [n_samples, n_classes]  

不平衡处理的参数:

1.一个简单的方法是设置is_unbalance参数为True或者设置scale_pos_weight,二者只能选一个。 设置is_unbalance参数为True时会把负样本的权重设为:正样本数/负样本数。这个参数只能用于二分类。

2.自定义评价函数:

https://cloud.tencent.com/developer/article/1357671

lightGBM的原理总结:

http://www.cnblogs.com/gczr/p/9024730.html

论文翻译:https://blog.csdn.net/u010242233/article/details/79769950https://zhuanlan.zhihu.com/p/42939089

处理分类变量的原理:https://blog.csdn.net/anshuai_aw1/article/details/83275299

CatBoost、LightGBM、XGBoost的对比

https://blog.csdn.net/LrS62520kV/article/details/79620615

 



lightgbm的sklearn接口和原生接口参数详细说明及调参指点的更多相关文章

  1. xgboost的sklearn接口和原生接口参数详细说明及调参指点

    from xgboost import XGBClassifier XGBClassifier(max_depth=3,learning_rate=0.1,n_estimators=100,silen ...

  2. word2vec参数调整 及lda调参

     一.word2vec调参   ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -neg ...

  3. DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化

    DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化 2017年11月29日 06:40:37 机器之心V 阅读数 2183   版权声明:本文为博主原创文章,遵循CC 4.0 BY ...

  4. python+pytest接口自动化(6)-请求参数格式的确定

    我们在做接口测试之前,先需要根据接口文档或抓包接口数据,搞清楚被测接口的详细内容,其中就包含请求参数的编码格式,从而使用对应的参数格式发送请求.例如某个接口规定的请求主体的编码方式为 applicat ...

  5. android 学习随笔二十七(JNI:Java Native Interface,JAVA原生接口 )

    JNI(Java Native Interface,JAVA原生接口) 使用JNI可以使Java代码和其他语言写的代码(如C/C++代码)进行交互. 问:为什么要进行交互? 首先,Java语言提供的类 ...

  6. 接口作为方法的参数或返回值——List接口

    接口作为方法的参数或返回值,源码可知,List为一个接口,ArraryList是的它的实现类: 其中,addNames方法中,入参和返回值都List接口,入参是多态的,编译看左,运行看右(访问成员方法 ...

  7. 编写高质量代码改善C#程序的157个建议——建议43:让接口中的泛型参数支持协变

    建议43:让接口中的泛型参数支持协变 除了上一建议中提到的使用泛型参数兼容接口不可变性外,还有一种办法是为接口中的泛型声明加上out关键字来支持协变,如下所示: interface ISalary&l ...

  8. Python+request 分模块存放接口,多接口共用参数URL、headers的抽离,添加日志打印等《三》

    主要介绍内容如下: 1.分模块存放接口 2.多接口共用参数URL.headers的抽离为配置文件 3.添加日志打印 4.一个py文件运行所有所测的接口 如上介绍内容的作用: 1.分模块存放接口:方便多 ...

  9. 对接接口时,组织参数json出现的问题

    在进行对接第三方接口时,进行参数组装成json的过程中出现参数传递格式错误以及json格式化错误. 在拼接json时,如果json中有对象,则以map的方式组装好所有参数.最后map转成json,不然 ...

随机推荐

  1. linux——git安装使用

    系统环境centos7 安装git命令 yum install git -y 安装好之后使用命令查看git版本 git –version [root@bogon ~]# git --version g ...

  2. Stream processing with Apache Flink and Minio

    转自:https://blog.minio.io/stream-processing-with-apache-flink-and-minio-10da85590787 Modern technolog ...

  3. 04基于python玩转人工智能最火框架之TensorFlow开发环境搭建

    MOOC_VM.vdl.zip 解压之后,得到一个vdl文件.打开virtual box,新建选择类型linuxubuntu 64位. 选择继续,分配2g.使用已有的虚拟硬盘文件,点击选择我们下载的文 ...

  4. C#遍历菜单项

    (1)横向遍历  ToolStripMenuItem foreach (ToolStripMenuItem con in this.MainMenuStrip.Items)            { ...

  5. 电脑上不安装Oracle时,C# 调用oracle数据库,Oracle客户工具 【转载】

    http://www.cnblogs.com/jiekzou/p/5047850.html Oracle的安装包通常都比较大,安装又比较费时,而且如果安装过程中不幸出错,各种蛋疼,即便是安装过N遍的老 ...

  6. 并发运算lib

    最近对类似于erlang或者golang的并发运算很感兴趣.以下是看到的相关资料. libgo c++,技术:协程,多线程.这是俺发现的用法最漂亮的c++库,用法参考golang CAF 全称c++ ...

  7. css加载字体跨域问题

    刚才碰到一个css加载字体跨域问题,记录一下.站点的动态请求与静态文件请求是不同的域名的.站点的域名为 www.domain.com,而静态文件的域名为 st.domain.com.问题:页面中加载c ...

  8. monkey配置及简单报告生成(安卓)

    参考网址:http://www.51testing.com/html/72/502872-3709760.html   1.安装jdk,配置环境变量   2.安装sdk(解压后,配置环境变量到path ...

  9. NET设计模式 第二部分 结构性模式(9):装饰模式(Decorator Pattern)

    装饰模式(Decorator Pattern) ——.NET设计模式系列之十 Terrylee,2006年3月 概述 在软件系统中,有时候我们会使用继承来扩展对象的功能,但是由于继承为类型引入的静态特 ...

  10. 用Shell判断字符串包含关系的方法小结

     这篇文章主要给大家介绍了关于用Shell判断字符串包含关系的几种方法,其中包括利用grep查找.利用字符串运算符.利用通配符.利用case in 语句以及利用替换等方法,每个方法都给出了详细的示例代 ...