题解

随机跳题真好玩

这个就是考虑我们怎么判断点在多边形内,就是点做一条射线,穿过了奇数条边

我们只需要记录一个二进制状态表示每个点的射线穿过路径的次数的奇偶性

枚举起点,然后用BFS的方式更新dp状态

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
//#define ivorysi
#define MAXN 300005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M,D,val[MAXN],ql,qr;
int dp[15][15][(1 << 9) + 5];
int dx[4] = {0,1,0,-1},dy[4] = {1,0,-1,0};
int tp[15][15][4],sum[(1 << 9) + 5];
char s[15][15];
struct node {
int x,y,S;
}que[1000005];
int Calc(int x,int y) {
int res = 0;
for(int j = 1 ; j < y ; ++j) {
if(s[x][j] >= '1' && s[x][j] <= '9') res |= (1 << (s[x][j] - '1'));
}
return res;
}
void Init() {
read(N);read(M);read(D);
for(int i = 1 ; i <= D ; ++i) read(val[i]);
for(int i = 1 ; i <= N ; ++i) scanf("%s",s[i] + 1);
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= M ; ++j) {
if(s[i][j] == '0') {
for(int k = 0 ; k <= 3 ; ++k) {
int tx = i + dx[k],ty = j + dy[k];
if(tx >= 1 && tx <= N && ty >= 1 && ty <= M && s[tx][ty] == '0') {
if(tx != i) {
tp[i][j][k] = Calc(max(i,tx),j);
}
}
else tp[i][j][k] = -1;
}
}
}
}
for(int i = 0 ; i < (1 << D) ; ++i) {
for(int j = 0 ; j < D ; ++j) {
if(i >> j & 1) sum[i] += val[j + 1];
}
}
}
void BFS(int x,int y) {
int ql = 1,qr = 0;
que[++qr] = (node){x,y,0};
dp[x][y][0] = 0;
while(ql <= qr) {
node u = que[ql++];
for(int k = 0 ; k <= 3 ; ++k) {
if(tp[u.x][u.y][k] != -1) {
if(dp[u.x + dx[k]][u.y + dy[k]][u.S ^ tp[u.x][u.y][k]] == -1) {
dp[u.x + dx[k]][u.y + dy[k]][u.S ^ tp[u.x][u.y][k]] = dp[u.x][u.y][u.S] + 1;
que[++qr] = (node){u.x + dx[k],u.y + dy[k],u.S ^ tp[u.x][u.y][k]};
}
}
}
}
}
void Solve() {
int ans = 0;
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= M ; ++j) {
if(s[i][j] != '0') continue;
memset(dp,-1,sizeof(dp));
BFS(i,j);
for(int k = 0 ; k < (1 << D) ; ++k) {
if(dp[i][j][k] != -1) ans = max(ans,sum[k] - dp[i][j][k]);
}
}
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
return 0;
}

【BZOJ】1294: [SCOI2009]围豆豆Bean的更多相关文章

  1. BZOJ 1294 [SCOI2009]围豆豆Bean ——计算几何

    显然我们不可能表示出一台路径,因为实在是太复杂了. 所以我们可以记录一下路径对答案的影响,显然路径对答案影响相同的时候,答案更优,所以我们可以用影响来代替路径. 所以我们考虑状压一下所有的豆子有没有被 ...

  2. [BZOJ1294][SCOI2009]围豆豆Bean 射线法+状压dp+spfa

    1294: [SCOI2009]围豆豆Bean Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 458  Solved: 305[Submit][Sta ...

  3. 【BZOJ1294】[SCOI2009]围豆豆Bean 射线法+状压DP+SPFA

    [BZOJ1294][SCOI2009]围豆豆Bean Description Input 第一行两个整数N和M,为矩阵的边长. 第二行一个整数D,为豆子的总个数. 第三行包含D个整数V1到VD,分别 ...

  4. BZOJ1294: [SCOI2009]围豆豆Bean

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1294 状压dp,dis[s][i][j]表示从(i,j)出发围的状态是s的最短路. 然后判断一 ...

  5. 【BZOJ1294】[SCOI2009]围豆豆(动态规划,状压)

    [BZOJ1294][SCOI2009]围豆豆(动态规划,状压) 题面 BZOJ 洛谷 题解 首先考虑如何判断一个点是否在一个多边形内(不一定是凸的),我们从这个点开始,朝着一个方向画一条射线,看看它 ...

  6. 洛谷P2566 [SCOI2009]围豆豆(状压dp+spfa)

    题目传送门 题解 Σ(っ °Д °;)っ 前置知识 射线法:从一点向右(其实哪边都行)水平引一条射线,若射线与路径的交点为偶数,则点不被包含,若为奇数,则被包含.(但注意存在射线与路径重合的情况) 这 ...

  7. [SCOI2009]围豆豆

    Description Input 第一行两个整数N和M,为矩阵的边长. 第二行一个整数D,为豆子的总个数. 第三行包含D个整数V1到VD,分别为每颗豆子的分值. 接着N行有一个N×M的字符矩阵来描述 ...

  8. bzoj1294 [SCOI2009]围豆豆

    Description Input 第一行两个整数N和M,为矩阵的边长. 第二行一个整数D,为豆子的总个数. 第三行包含D个整数V1到VD,分别为每颗豆子的分值. 接着N行有一个N×M的字符矩阵来描述 ...

  9. 【题解】SCOI2009围豆豆

    很久之前就很想做的一道题,一直思考到今天才下定决心看题解.这道题中,很关键的一点就在于:如何判断一个点是否在一个多边形内?其实如果计算几何基本功扎实的话,应该是可以很快给出答案的(可惜我完全不行):由 ...

随机推荐

  1. UVa 572 油田 (dfs)

    The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. GeoSu ...

  2. MT【80】单调性求函数表达式

    提示:$f(f(f(x)-lnx)-ln(f(x)-lnx))=1+e=f(f(x)-lnx),\because f(x)$单调.得: $f(f(x)-lnx)-ln(f(x)-lnx)=f(x)-l ...

  3. MT【85】正整数系数

    评:这类与正整数有关的题,是很多学生所不习惯以及无从下手的.事实上很多时候要用到整数的这个性质:$m>n,m,n\in Z$则$m\ge n+1$,这道题用二次函数区间上有根的一般做法也可以,大 ...

  4. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  5. 【bzoj4516】 Sdoi2016—生成魔咒

    http://www.lydsy.com/JudgeOnline/problem.php?id=4516 (题目链接) 题意 依次向字符串末尾加上一个字符,每次求不同子串个数. Solution 如果 ...

  6. solr的基本使用

    Solr 概念: 1. 搜索引擎的技术,建立在Lucene之上,可以解决跨平台,跨语言的问题.(Lucene本身是个jar包,也就是API,不能独立运行,需要程序的调用来完成全局检索,不具备跨平台,跨 ...

  7. java.lang.UnsupportedClassVersionError: org/kie/api/KieServices$Factory : Unsupported major.minor version 52.0

    Unsupported major.minor version 52.0为JDK1.8编译器的版本,需要更换为JDK1.8的编译器与JDK1.8开发环境 idea中通过修改

  8. zabbix监控的基础概念、工作原理及架构(一)

    zabbix监控的基础概念.工作原理及架构 转载于网络 一.什么是zabbix及优缺点 Zabbix能监视各种网络参数,保证服务器系统的安全运营,并提供灵活的通知机制以让系统管理员快速定位/解决存在的 ...

  9. 「Vue」父子组件之间的传值及调用方法

    a.父组件向子组件传值data(){},props数据区别data中的数据可读可写,是自己的数据props是个数组,中的数据是父组件传递过来的,只读不能写<login :dmsg='msg'&g ...

  10. Eclipse的一些常用的快捷键

    写代码的时候常用的: Ctrl + 鼠标左键: 进入函数定义,变量声明: Alt + ←: 回到上次编辑的地方, 同理 Alt + → 可以移回来 Ctrl + O: 查找当前类的所有函数,变量 Ct ...