POJ 3292
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7059 | Accepted: 3030 |
Description
This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.
An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.
As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.
For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.
Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.
Input
Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.
Output
For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.
Sample Input
21
85
789
0
Sample Output
21 0
85 5
789 62
Source
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream> using namespace std; #define maxn 1000005 bool H[maxn];
int ans[maxn],ele[maxn];
int len = ; void init() { for(int i = ; i <= maxn - ; i++) {
H[i] = (i % == );
} for(int i = ; i * i <= maxn - ; i += ) {
if(!H[i]) continue;
for(int j = i; j * i <= maxn - ; j++) {
H[j * i] = ;
}
} for(int i = ; i <= maxn - ; i += ) {
if(H[i]) {
ele[len++] = i;
}
} for(int i = ; i < len && ele[i] * ele[i] <= maxn - ; i++) {
for(int j = i; j < len && ele[j] * ele[i] <= maxn - ; j++) {
if(ele[i] * ele[j] % == )
ans[ ele[i] * ele[j] ] = ;
}
} for(int i = ; i <= maxn - ; i++) {
ans[i] += ans[i - ];
}
} int main() {
// freopen("sw.in","r",stdin); init(); int x;
while(~scanf("%d",&x) && x) {
printf("%d %d\n",x,ans[x]);
} return ; }
POJ 3292的更多相关文章
- 【POJ 3292】 Semi-prime H-numbers
[POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...
- POJ 3292 Semi-prime H-numbers
类似素数筛... Semi-prime H-numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6873 Accept ...
- Mathematics:Semi-prime H-numbers(POJ 3292)
Semi-prime H-numbers 题目大意,令4n+1的数叫H数,H数素数x的定义是只能被x=1*h(h是H数),其他都叫合数,特别的,当一个数只能被两个H素数乘积得到时,叫H-semi数 ...
- POJ 3292 Semi-prime H-numbers (素数筛法变形)
题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...
- Semi-prime H-numbers POJ - 3292 打表(算复杂度)
题意:参考https://blog.csdn.net/lyy289065406/article/details/6648537 一个H-number是所有的模四余一的数. 如果一个H-number是H ...
- poj 3292 H-素数问题 扩展艾氏筛选法
题意:形似4n+1的被称作H-素数,两个H-素数相乘得到H-合成数.求h范围内的H-合成数个数 思路: h-素数 ...
- 筛选法 || POJ 3292 Semi-prime H-numbers
5,9,13,……叫H-prime 一个数能且仅能由两个H-prime相乘得到,则为H-semi-prime 问1-n中的H-semi-prime有多少个 *解法:vis初始化为0代表H-prime, ...
- POJ 3292:Semi-prime H-numbers 筛选数
Semi-prime H-numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8216 Accepted: 3 ...
- Day7 - I - Semi-prime H-numbers POJ - 3292
This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study th ...
随机推荐
- 跨frame操作dom元素
今天,一群友问到跨frame操作dom元素的问题.于是写了个demo,在此发表在博客里面,供其他同道中人参考! 创建child.html内容如下: <!DOCTYPE HTML PUBLIC & ...
- English Learning
EnglishPod 百度云盘:http://pan.baidu.com/s/1eQUJquA
- 已有数据表的Mysql字符编码修改
Mysql字符集修改应该如何实现呢?下面就为您详细介绍已用数据表的Mysql字符集修改方法,希望对您学习Mysql字符集方面能有所启迪. 环境:在应用开始阶段没有正确的设置字符集,在运行一段时间以后才 ...
- UILabel常用属性
[super viewDidLoad]; // 实例化UILabel并指定其边框 UILabel *label = [[UILabel alloc]initWithFrame:CGRectMake(0 ...
- 使用C++读取UTF8及GBK系列的文本方法及原理
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4374404.html 1.读取UTF-8编码文本原理 首先了解UTF-8的编码方式,UTF- ...
- Win7下MongoDB安装
一.下载MongoDB 下载地址:http://www.mongodb.org/downloads 注意:1.从2.2开始,MongoDB不再支持windows xp. 2.32位MongoDB最大支 ...
- sqlServer2008 手工注入
接着上一篇的<mysql手工注入> 参考:http://hi.baidu.com/ciqing_s/item/971bf994365130accc80e5ed http://hi.baid ...
- 对图片进行各种样式裁对图片进行各种样式裁剪:圆形、星形、心形、花瓣形等剪:圆形、星形、心形、花瓣形等--第三方开源--CustomShapeImageView
CustomShapeImageView在github上的项目主页是:https://github.com/MostafaGazar/CustomShapeImageView 如果仅仅是需要获取圆形. ...
- javascript refresh page 几种页面刷新的方法
Javascript刷新页面的几种方法:1 history.go(0) 2 location.reload() 3 location=location 4 location.a ...
- @RenderSection与@RenderBody
_LayoutMain: <html> <head> @RenderSection("head") </head> <body> @ ...