Semi-prime H-numbers
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7059   Accepted: 3030

Description

This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21
85
789
0

Sample Output

21 0
85 5
789 62

Source

 
 
仿照素数的埃氏筛选法即可
 
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream> using namespace std; #define maxn 1000005 bool H[maxn];
int ans[maxn],ele[maxn];
int len = ; void init() { for(int i = ; i <= maxn - ; i++) {
H[i] = (i % == );
} for(int i = ; i * i <= maxn - ; i += ) {
if(!H[i]) continue;
for(int j = i; j * i <= maxn - ; j++) {
H[j * i] = ;
}
} for(int i = ; i <= maxn - ; i += ) {
if(H[i]) {
ele[len++] = i;
}
} for(int i = ; i < len && ele[i] * ele[i] <= maxn - ; i++) {
for(int j = i; j < len && ele[j] * ele[i] <= maxn - ; j++) {
if(ele[i] * ele[j] % == )
ans[ ele[i] * ele[j] ] = ;
}
} for(int i = ; i <= maxn - ; i++) {
ans[i] += ans[i - ];
}
} int main() {
// freopen("sw.in","r",stdin); init(); int x;
while(~scanf("%d",&x) && x) {
printf("%d %d\n",x,ans[x]);
} return ; }

POJ 3292的更多相关文章

  1. 【POJ 3292】 Semi-prime H-numbers

    [POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...

  2. POJ 3292 Semi-prime H-numbers

    类似素数筛... Semi-prime H-numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6873 Accept ...

  3. Mathematics:Semi-prime H-numbers(POJ 3292)

      Semi-prime H-numbers 题目大意,令4n+1的数叫H数,H数素数x的定义是只能被x=1*h(h是H数),其他都叫合数,特别的,当一个数只能被两个H素数乘积得到时,叫H-semi数 ...

  4. POJ 3292 Semi-prime H-numbers (素数筛法变形)

    题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...

  5. Semi-prime H-numbers POJ - 3292 打表(算复杂度)

    题意:参考https://blog.csdn.net/lyy289065406/article/details/6648537 一个H-number是所有的模四余一的数. 如果一个H-number是H ...

  6. poj 3292 H-素数问题 扩展艾氏筛选法

    题意:形似4n+1的被称作H-素数,两个H-素数相乘得到H-合成数.求h范围内的H-合成数个数 思路: h-素数                                            ...

  7. 筛选法 || POJ 3292 Semi-prime H-numbers

    5,9,13,……叫H-prime 一个数能且仅能由两个H-prime相乘得到,则为H-semi-prime 问1-n中的H-semi-prime有多少个 *解法:vis初始化为0代表H-prime, ...

  8. POJ 3292:Semi-prime H-numbers 筛选数

    Semi-prime H-numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8216   Accepted: 3 ...

  9. Day7 - I - Semi-prime H-numbers POJ - 3292

    This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study th ...

随机推荐

  1. javaweb毕业设计

    javaweb毕业设计,管理系统设计,Strut2项目,Springmvc项目,javaweb项目学习. 都是可以运行的,(配数据库和论文),都能提供技术咨询,可以修改.欢迎+扣扣396058587咨 ...

  2. 内核 current宏解析

    Technorati 标签: current thread_info      在内核中,可以通过current宏来获得当前执行进程的task_struct指针.现在来简要分析以下:      最原始 ...

  3. 如何设置fedora默认从命令行启动?

    Sumary:因为在fedora中没有/etc/initab文件我们不方便从这里设置它的runlevel target,但是linux又给我们提供了一个强悍的工具systemd,我们可以用system ...

  4. 预处理C#

    1.什么是预处理 源代码指定了程序的定义.预处理(preprocessior directive)指令是指示编译器如何处理源代码.这里的预处理和C,C++里面的预处理是不一样的,在C,C++中有实际的 ...

  5. Memcached 配置 和项目应用

    Memcached 配置 http://blog.csdn.net/sup_heaven/article/details/32337711 memcached真实项目中的应用 http://blog. ...

  6. SQLServer数据库表中将指定列分组转一行

    不说明,直接看代码: --1. 创建表,添加测试数据 CREATE TABLE #test(code varchar(50), [values] varchar(10)) INSERT #test S ...

  7. php操作mysql数据库的基本类

    代码如下 复制代码 <?php$dbhost='localhost';$dbuser='root';$dbpass='123456';$dbname='products';$connect=my ...

  8. 使用微软分布式缓存服务Velocity(Windows Server AppFabric Caching Service)

    概述 Velocity是微软推出的分布式缓存解决方案,为开发可扩展性,可用的,高性能的应用程提供支持,可以缓存各种类型的数据,如CLR对象. XML.二进制数据等,并且支持集群模式的缓存服务器.Vel ...

  9. ORACLE AWR 和 ASH

    一.关于ASH 我们都知道,用户在 ORACLE 数据库中执行操作时,必然要创建相应的连接和会话, 其中,所有当前的会话信息都保存在动态性能视图 V$SESSION 中,通过该视图,DBA 可 以查看 ...

  10. 你的数据根本不够大,别老扯什么Hadoop了

    本文原名"Don't use Hadoop when your data isn't that big ",出自有着多年从业经验的数据科学家Chris Stucchio,纽约大学柯 ...