题目链接:http://poj.org/problem?id=3744

  简单的概率DP,分段处理,遇到mine特殊处理。f[i]=f[i-1]*p+f[i-2]*(1-p),i!=w+1,w为mine点。这个概率显然是收敛的,可以转化为(f[i]-f[i-1])/(f[i-1]-f[i-2])=p-1。题目要求精度为1e-7,在分段求的时候我们完全可以控制进度,精度超出了1e-7就不运算下去了。当然此题还可以用矩阵乘法来优化。

  考虑概率收敛代码:

 //STATUS:C++_AC_0MS_164KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e30;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End double f1,f2,f3;
double p;
int n; int main(){
// freopen("in.txt","r",stdin);
int i,j,w[],ok;
while(~scanf("%d%lf",&n,&p)){
f1=;f2=;
ok=;
for(i=;i<n;i++)scanf("%d",&w[i]);
sort(w,w+n);
for(i=,j=;j<n;j++){
if(w[j]==i)ok=;
for(;i<w[j]- && sign(f2-f1);i++){
f3=f2*p+f1*(-p);
f1=f2,f2=f3;
}
i=w[j]+;
f2*=-p;
f1=;
}
printf("%.7lf\n",ok?f2:0.0);
}
return ;
}

  

  矩阵乘法优化:

 //STATUS:C++_AC_16MS_164KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e30;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End double p;
int n; const int size=; struct Matrix{
double ma[size][size];
Matrix friend operator * (const Matrix a,const Matrix b){
Matrix ret;
mem(ret.ma,);
int i,j,k;
for(i=;i<size;i++)
for(j=;j<size;j++)
for(k=;k<size;k++)
ret.ma[i][j]=ret.ma[i][j]+a.ma[i][k]*b.ma[k][j];
return ret;
}
}A; Matrix mutilpow(int k)
{
int i,j;
Matrix ret;
mem(ret.ma,);
for(i=;i<size;i++)
ret.ma[i][i]=;
for(;k;k>>=){
if(k&)ret=ret*A;
A=A*A;
}
return ret;
} int main(){
// freopen("in.txt","r",stdin);
int i,j,w[],ok;
Matrix S,t;
double F[];
while(~scanf("%d%lf",&n,&p)){
S.ma[][]=,S.ma[][]=;
S.ma[][]=-p,S.ma[][]=p;
F[]=,F[]=;
ok=;
for(i=;i<n;i++)
scanf("%d",&w[i]);
sort(w,w+n);
for(i=,j=;i<n;i++){
if(w[i]==j){ok=;break;}
A=S;
t=mutilpow(w[i]-j-);
F[]=(t.ma[][]*F[]+t.ma[][]*F[])*(-p);
F[]=;
j=w[i]+;
} printf("%.7lf\n",ok?F[]:0.0);
}
return ;
}

POJ-3744 Scout YYF I 概率DP的更多相关文章

  1. POJ 3744 Scout YYF I 概率dp+矩阵快速幂

    题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...

  2. poj 3744 Scout YYF I(概率dp,矩阵优化)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5020   Accepted: 1355 Descr ...

  3. poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)

    F - Scout YYF I Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  4. poj 3744 Scout YYF I(递推求期望)

    poj 3744 Scout YYF I(递推求期望) 题链 题意:给出n个坑,一个人可能以p的概率一步一步地走,或者以1-p的概率跳过前面一步,问这个人安全通过的概率 解法: 递推式: 对于每个坑, ...

  5. POJ 3744 Scout YYF I

    分段的概率DP+矩阵快速幂                        Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  6. poj3744 Scout YYF I[概率dp+矩阵优化]

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8598   Accepted: 2521 Descr ...

  7. POJ3744 Scout YYF I 概率DP+矩阵快速幂

    http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...

  8. POJ 3744 Scout YYF I(矩阵快速幂优化+概率dp)

    http://poj.org/problem?id=3744 题意: 现在有个屌丝要穿越一个雷区,雷分布在一条直线上,但是分布的范围很大,现在这个屌丝从1出发,p的概率往前走1步,1-p的概率往前走2 ...

  9. POJ 3744 Scout YYF I:概率dp

    题目链接:http://poj.org/problem?id=3744 题意: 有n个地雷,位置为pos[i]. 在每个位置,你向前走一步的概率为p,向前走两步的概率为1-p. 你的初始位置为1. 问 ...

随机推荐

  1. "Principles of Reactive Programming" 之<Actors are Distributed> (2)

    Actor Path 我们知道actor是有层级的(hierarchical),第.每个actor在它的父actor的名字空间下都有一个名字.这样就构成了一个树状的结构,就像是文件系统.每个actor ...

  2. Akka的fault tolerant

    要想容错,该怎么办? 父actor首先要获知子actor的失败状态,然后确定该怎么办, “怎么办”这回事叫做“supervisorStrategy".   // Restart the st ...

  3. 荣誉,还是苦逼?| 也议全栈工程师和DevOps

    引言 全栈工程师(本文称「全栈」开发者)和 DevOps 无疑是近期最火的词汇,无论是国外还是国内.而且火爆程度远超于想象. 全栈和 DevOps,究竟是我们的新职业方向,还是仅仅创业公司老板的心头所 ...

  4. c++ ANSI、UNICODE、UTF8互转

        static std::wstring MBytesToWString(const char* lpcszString);    static std::string WStringToMBy ...

  5. URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)

    点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...

  6. HDU 1422 重温世界杯(DP)

    点我看题目 题意 : 中文题不详述. 思路 : 根据题目描述及样例可以看出来,如果你第一个城市选的是生活费减花费大于等于0的时候才可以,最好是多余的,这样接下来的就算是花超了(一定限度内的花超),也可 ...

  7. java I/O Stream 代码学习总结

    一. InputStream 类学习介绍 mark方法 public void mark(int readlimit) 在此输入流中标记当前的位置.对 reset 方法的后续调用会在最后标记的位置重新 ...

  8. 启动 Eclipse 弹出“Failed to load the JNI shared library jvm.dll”错误的解决方法!

    启动 Eclipse 弹出"Failed to load the JNI shared library jvm.dll"错误的解决方法 http://blog.csdn.net/z ...

  9. log4j:ERROR A "org.jboss.logging.appender.FileAppender" object is not assignable to a "org.apache.lo .

    log4j:ERROR A "org.jboss.logging.appender.FileAppender" object is not assignable to a &quo ...

  10. 第十七章 委托 第十八章 Attribute 第十九章 可空值类型

    1.委托揭秘 定义一个委托,编译器会生成一个继承自System.MulticastDelegate的类,所有的委托都继承自该类. 由于委托是类,所以能定义类的地方,都能定义委托. 委托内部有一个tar ...