/*
 * To change this template, choose Tools | Templates
 * and open the template in the editor.
 */
package snailocr.util;

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;

/**
 *
 * @author Administrator
 */
public class ImageTool {

private BufferedImage image;
    private int width;
    private int height;

/**
     * 变图像为黑白色 提示: 黑白化之前最好灰色化以便得到好的灰度平均值,利于获得好的黑白效果
     *
     * @return
     */
    public ImageTool changeToBlackWhiteImage() {
        int avgGrayValue = getAvgValue();
        int whitePoint = getWhitePoint(), blackPoint = getBlackPoint();

Color point;
        for (int i = 0; i < height; i++) {
            for (int j = 0; j < width; j++) {
                point = new Color(image.getRGB(j, i));
                image.setRGB(j, i, (point.getRed() < avgGrayValue ? blackPoint : whitePoint));
            }
        }
        return this;
    }

/**
     *
     *
     * @param whiteAreaPercent 过滤之后白色区域面积占整个图片面积的最小百分比
     * @param removeLighter true:过滤比中值颜色轻的,false:过滤比中值颜色重的,一般都是true
     * @return
     */
    public ImageTool midddleValueFilter(int whiteAreaMinPercent, boolean removeLighter) {
        int modify = 0;
        int avg = getAvgValue();
        Color point;
        while (getWhitePercent() < whiteAreaMinPercent) {
            for (int i = 0; i < height; i++) {
                for (int j = 0; j < width; j++) {
                    point = new Color(image.getRGB(j, i));
                    if (removeLighter) {
                        if (((point.getRed() + point.getGreen() + point.getBlue()) / 3) > avg - modify) {
//                         System.out.println(((point.getRed() + point.getGreen() + point.getBlue()) / 3)+"--"+(avg - modify));
                            image.setRGB(j, i, getWhitePoint());
                        }
                    } else {
                        if (((point.getRed() + point.getGreen() + point.getBlue()) / 3) < avg + modify) {
//                         System.out.println(((point.getRed() + point.getGreen() + point.getBlue()) / 3)+"--"+(avg - modify));
                            image.setRGB(j, i, getWhitePoint());
                        }
                    }

}
            }
            modify++;
        }
//        System.out.println(getWhitePercent());
        return this;
    }

private int getWhitePercent() {
        Color point;
        int white = 0;
        for (int i = 0; i < height; i++) {
            for (int j = 0; j < width; j++) {
                point = new Color(image.getRGB(j, i));
                if (((point.getRed() + point.getGreen() + point.getBlue()) / 3) == 255) {
                    white++;
                }
            }
        }
        return (int) Math.ceil(((float) white * 100 / (width * height)));
    }

/**
     * @param 变图像为灰色 取像素点的rgb三色平均值作为灰度值
     *
     * @return
     */
    public ImageTool changeToGrayImage() {
        int gray;
        Color point;
        for (int i = 0; i < height; i++) {
            for (int j = 0; j < width; j++) {
                point = new Color(image.getRGB(j, i));
                gray = (point.getRed() + point.getGreen() + point.getBlue()) / 3;
                image.setRGB(j, i, new Color(gray, gray, gray).getRGB());
            }
        }
        return this;
    }

/**
     *
     * 去除噪点和单点组成的干扰线 注意: 去除噪点之前应该对图像黑白化
     *
     * @param neighborhoodMinCount 每个点最少的邻居数
     * @return
     */
    public ImageTool removeBadBlock(int blockWidth, int blockHeight, int neighborhoodMinCount) {
        int val;
        int whitePoint = getWhitePoint();
        int counter, topLeftXIndex, topLeftYIndex;
        for (int y = 0; y < height; y++) {
            for (int x = 0; x < width; x++) {
                //初始化邻居数为0
                counter = 0;
                topLeftXIndex = x - 1;
                topLeftYIndex = y - 1;
                //x1 y1是以x,y左上角点为顶点的矩形,该矩形包围在传入的矩形的外围,计算传入的矩形的有效邻居数目
                if (isBlackBlock(x, y, blockWidth, blockHeight)) {//只有当块是全黑色才计算
                    for (int x1 = topLeftXIndex; x1 <= topLeftXIndex + blockWidth + 1; x1++) {
                        for (int y1 = topLeftYIndex; y1 <= topLeftYIndex + blockHeight + 1; y1++) {
                            //判断这个点是否存在
                            if (x1 < width && x1 >= 0 && y1 < height && y1 >= 0) {
                                //判断这个点是否是传入矩形的外围点
                                if (x1 == topLeftXIndex || x1 == topLeftXIndex + blockWidth + 1
                                        || y1 == topLeftYIndex || y1 == topLeftYIndex + blockHeight + 1) {
                                    //这里假定图像已经被黑白化,取Red值认为不是0就是255
                                    val = new Color(image.getRGB(x1, y1)).getRed();
//                                System.out.println(val + "--" + (centerVal));
                                    //如果这个邻居是黑色,就把中心点的有效邻居数目加一
                                    if (val == 0) {
                                        counter++;
                                    }
                                }
                            }
                        }
                    }
//                    System.out.println("-------------------");
//                System.out.println(x+"-"+y+"-"+counter);
                    if (counter < neighborhoodMinCount) {
                        image.setRGB(x, y, whitePoint);
                    }
                }
            }
        }
        return this;
    }

/**
     * 如果点周围的黑点数达到补偿值就把这个点变为黑色
     *
     * @param addFlag 补偿阀值,通过观察处理过的图像确定,一般为2即可
     * @return
     */
    public ImageTool modifyBlank(int addFlag) {
        int val, counter = 0, topLeftXIndex, topLeftYIndex, blackPoint = getBlackPoint();
        Color point;
        for (int y = 0; y < height; y++) {
            for (int x = 0; x < width; x++) {
                //初始化邻居数为0
                counter = 0;
                topLeftXIndex = x - 1;
                topLeftYIndex = y - 1;
                point = new Color(image.getRGB(x, y));
                //这里假定图像已经被黑白化,取Red值认为不是0就是255
                val = point.getRed();
                //只有白点才进行补偿
                if (val == 255) {
                    for (int x1 = topLeftXIndex; x1 <= topLeftXIndex + 2; x1++) {
                        for (int y1 = topLeftYIndex; y1 <= topLeftYIndex + 2; y1++) {
                            //判断这个点是否存在
                            if (x1 < width && x1 >= 0 && y1 < height && y1 >= 0) {
                                //判断这个点是否是传入点的外围点
                                if (x1 == topLeftXIndex || x1 == topLeftXIndex + 2
                                        || y1 == topLeftYIndex || y1 == topLeftYIndex + 2) {
                                    //这里假定图像已经被黑白化,取Red值认为不是0就是255
                                    val = new Color(image.getRGB(x1, y1)).getRed();
//                                System.out.println(val + "--" + (centerVal));
                                    //如果这个邻居是黑色,就把中心点的补偿数目加一
                                    if (val == 0) {
                                        counter++;
                                    }
                                }
                            }
                        }
                    }
                    //如果这个点周围的黑点数达到补偿值就把这个点变为黑色
                    if (counter >= addFlag) {
                        image.setRGB(x, y, blackPoint);
                    }
                }
            }
        }
        return this;
    }

public BufferedImage getBufferedImage(String filename) {
        File file = new File(filename);
        try {
            return ImageIO.read(file);
        } catch (IOException ex) {
            Logger.getLogger(ImageTool.class.getName()).log(Level.SEVERE, null, ex);
            return null;
        }
    }

private boolean isBlackBlock(int startX, int startY, int blockWidth, int blockHeight) {
        int counter = 0;//统计黑色像素点的个数
        int total = 0;//统计有效像素点的个数
        int val;
        for (int x1 = startX; x1 <= startX + blockWidth - 1; x1++) {
            for (int y1 = startY; y1 <= startY + blockHeight - 1; y1++) {
                //判断这个点是否存在
                if (x1 < width && x1 >= 0 && y1 < height && y1 >= 0) {
                    total++;//有效像素点的个数
                    //这里假定图像已经被黑白化,取Red值认为不是0就是255
                    val = new Color(image.getRGB(x1, y1)).getRed();
                    //如果这个点是黑色,就把黑色像素点的数目加一
                    if (val == 0) {
                        counter++;
                    }
                }
            }
        }
//        System.out.println(startX + "--" + startY + "" + (counter == total&&total!=0));
        return counter == total && total != 0;
    }

private int getWhitePoint() {
        return (new Color(255, 255, 255).getRGB() & 0xffffffff);
    }

private int getBlackPoint() {
        return (new Color(0, 0, 0).getRGB() & 0xffffffff);
    }

private int getAvgValue() {
        Color point;
        int total = 0;
        for (int i = 0; i < height; i++) {
            for (int j = 0; j < width; j++) {
                point = new Color(image.getRGB(j, i));
                total += (point.getRed() + point.getGreen() + point.getBlue()) / 3;
            }
        }
        return total / (width * height);
    }

public void saveToFile(String filePath) {
        try {
            String ext = filePath.substring(filePath.lastIndexOf(".") + 1);
            File newFile = new File(filePath);
            ImageIO.write(image, ext, newFile);
        } catch (IOException ex) {
            Logger.getLogger(ImageTool.class.getName()).log(Level.SEVERE, null, ex);
        }
    }

public BufferedImage getImage() {
        return image;
    }

public void setImage(BufferedImage image) {
        this.image = image;
        width = image.getWidth();
        height = image.getHeight();
    }
}

java 验证码图片处理类,为验证码识别做准备的更多相关文章

  1. c# 验证码图片生成类

    using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Drawing2D ...

  2. ThinkPHP---TP功能类之验证码

    [一]验证码 验证码全称:captcha(全自动识别机器与人类的图灵测试),简单理解就是区分当前操作是人执行的还是机器执行的 常见验证码分3种:页面上图片形式.短信验证码(邮箱验证可以归类到短信验证码 ...

  3. Java中SSM+Shiro系统登录验证码的实现方法

    1.验证码生成类: import java.util.Random; import java.awt.image.BufferedImage; import java.awt.Graphics; im ...

  4. .Net中验证码图片生成

    开发网站或平台系统,登录页面是必不可少的功能,但是现在很多人可以使用工具暴力破解网站密码,为了防止这类非法操作,需要在登录页面添加验证,验证码就是最常用的一种验证方式. 我结合了自己的经验和网上的验证 ...

  5. Winform中产生验证码图片

    1.创建ValidCode类: public class ValidCode { #region Private Fields private const double PI = 3.14159265 ...

  6. 验证码在后台的编写,并实现点击验证码图片时时发生更新 C# 项目发布到IIS后不能用log4net写日志

    验证码在后台的编写,并实现点击验证码图片时时发生更新   验证码在软件中的地位越来越重要,有效防止这种问题对某一个特定注册用户用特定程序暴力破解方式进行不断的登陆尝试:下面就是实现验证码的基本步骤: ...

  7. asp.net验证码图片生成示例

    验证码,一个很常见的东西.不管你是使用者还是开发者,这个东西80%的人都见到过,但是之前有人给我说过这么一句话“内行看门道,外行看热闹!”,仔细琢磨一下还真的是那么一回事.对于怎么实现验证码,闲话不多 ...

  8. 验证码图片生成工具类——Captcha.java

    验证码图片生成工具,使用JAVA生成的图片验证码,调用getRandcode方法获取图片验证码,以流的方式传输到前端页面. 源码如下:(点击下载  Captcha.java) import java. ...

  9. java生成图片验证码(转)--封装生成图片验证码的工具类

    博客部分内容转载自 LonlySnow的博客:后台java 实现验证码生成 1.controller方法 @RequestMapping(value = "/verifycode/img&q ...

随机推荐

  1. C# 实现无焦点窗体(转载)

    #region 无焦点窗体 [System.Runtime.InteropServices.DllImport("user32.dll")] private extern stat ...

  2. 基于gSOAP使用头文件的C语言版web service开发过程例子

    基于gSOAP使用头文件的C语言版web service开发过程例子 一服务端 1 打开VS2005,创建一个工程,命名为calcServer. 2 添加一个头文件calc.h,编辑内容如下: 1// ...

  3. [WinForm] 使用 WebBrowser 操作 HTML 頁面的 Element-摘自网络

    前言 在 Window Form 應用程式如果需要瀏覽網頁時可以崁入 WebBrowser 控制項,但如果需要操作崁入的 HTML 的網頁元素,就需要額外的操作,以下紀錄幾種操作 HTML 元素的方法 ...

  4. html5 canvas图片翻转

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  5. 关于 python 的 @property总结和思考

    其实关于@property我到处去搜了很多教程来看,因为公司大量使用了oop的编程而我以前很少写,所以现在来重新补过来. 从使用上来说 加了@property之后最明显的区别就是 class Stud ...

  6. Java ClassLoader 原理详细分析

    一.什么是ClassLoader? 大家都知道,当我们写好一个Java程序之后,不是管是CS还是BS应用,都是由若干个.class文件组织而成的一个完整的Java应用程序,当程序在运行时,即会调用该程 ...

  7. Quora的技术探索(转)

    原文:http://www.cnblogs.com/xiekeli/archive/2012/04/27/2473808.html 关于问答类的应用,最早接触的是stackoverflow和知乎 ,而 ...

  8. Hadoop学习笔记(1)

    Hadoop是什么?先问一下百度吧: [百度百科]一个分布式系统基础架构,由Apache基金会所开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. H ...

  9. WIN7 WIN8 笔记本无线网卡MAC地址修改

    找了好久,尝试了好多种方法,最后终于在下面的网址里找到了解决方案 http://jingyan.baidu.com/article/ceb9fb10e32bce8cac2ba04a.html 使用MA ...

  10. class tuple

    class tuple(object): """ tuple() -> empty tuple tuple(iterable) -> tuple initia ...