一元线性回归模型与最小二乘法及其C++实现
原文:http://blog.csdn.net/qll125596718/article/details/8248249
监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面...这里,谈一谈最简单的一元线性回归模型。
1.一元线性回归模型
模型如下:


总体回归函数中Y与X的关系可是线性的,也可是非线性的。对线性回归模型的“线性”有两种解释:
(1)就变量而言是线性的,Y的条件均值是 X的线性函数
(2)就参数而言是线性的,Y的条件均值是参数
的线性函数
线性回归模型主要指就参数而言是“线性”,因为只要对参数而言是线性的,都可以用类似的方法估计其参数。
2.参数估计——最小二乘法
对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:
(1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。
(2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。
(3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。
最常用的是普通最小二乘法( Ordinary Least Square,OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。(Q为残差平方和)
样本回归模型:

残差平方和:

则通过Q最小确定这条直线,即确定
,以
为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:

解得:

3.最小二乘法c++实现
- #include<iostream>
- #include<fstream>
- #include<vector>
- using namespace std;
- class LeastSquare{
- double a, b;
- public:
- LeastSquare(const vector<double>& x, const vector<double>& y)
- {
- double t1=0, t2=0, t3=0, t4=0;
- for(int i=0; i<x.size(); ++i)
- {
- t1 += x[i]*x[i];
- t2 += x[i];
- t3 += x[i]*y[i];
- t4 += y[i];
- }
- a = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2);
- //b = (t4 - a*t2) / x.size();
- b = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2);
- }
- double getY(const double x) const
- {
- return a*x + b;
- }
- void print() const
- {
- cout<<"y = "<<a<<"x + "<<b<<"\n";
- }
- };
- int main(int argc, char *argv[])
- {
- if(argc != 2)
- {
- cout<<"Usage: DataFile.txt"<<endl;
- return -1;
- }
- else
- {
- vector<double> x;
- ifstream in(argv[1]);
- for(double d; in>>d; )
- x.push_back(d);
- int sz = x.size();
- vector<double> y(x.begin()+sz/2, x.end());
- x.resize(sz/2);
- LeastSquare ls(x, y);
- ls.print();
- cout<<"Input x:\n";
- double x0;
- while(cin>>x0)
- {
- cout<<"y = "<<ls.getY(x0)<<endl;
- cout<<"Input x:\n";
- }
- }
- }
一元线性回归模型与最小二乘法及其C++实现的更多相关文章
- R语言解读一元线性回归模型
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体 ...
- R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...
- Python实现——一元线性回归(梯度下降法)
2019/3/25 一元线性回归--梯度下降/最小二乘法_又名:一两位小数点的悲剧_ 感觉这个才是真正的重头戏,毕竟前两者都是更倾向于直接使用公式,而不是让计算机一步步去接近真相,而这个梯度下降就不一 ...
- 线性回归模型(Linear Regression)及Python实现
线性回归模型(Linear Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 对于一份数据,它有两个变量,分别是Petal.Width和Se ...
- 回归分析法&一元线性回归操作和解释
用Excel做回归分析的详细步骤 一.什么是回归分析法 "回归分析"是解析"注目变量"和"因于变量"并明确两者关系的统计方法.此时,我们把因 ...
- SPSS--回归-多元线性回归模型案例解析
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x ...
- 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)
在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...
- 一元线性回归与R语言
(https://mirrors.tuna.tsinghua.edu.cn/CRAN/)下载好R之后打开,就可以输入命令,如下,我输入 > y=c(61,57,58,40,90,35,68) ...
- PRML读书笔记——线性回归模型(上)
本章开始学习第一个有监督学习模型--线性回归模型."线性"在这里的含义仅限定了模型必须是参数的线性函数.而正如我们接下来要看到的,线性回归模型可以是输入变量\(x\)的非线性函数. ...
随机推荐
- 从python run 和python unittest两种eclipse运行方式深入理解if __name__ == "__main__"
在写一个简单的python测试程序的时候,发现eclipse中Run as "Python run 和 Python unittest”结果不一样?为什么会不一样? 先贴一下代码段: # - ...
- POST 一张 图像的调试来认识 http post
上传图片的详细 2559字节
- 自动化运维工具ansible-如何设置客户端多python版本问题
问题:在使用ansible进行管理客户主机时,发现客户主机安装了多个版本的python,并且默认版本为3.0 shell>>cat list 192.168.2.9 shell>&g ...
- Java邮件服务学习之二:SMTP和POP3
一.SMTP SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则.SMTP协议属于TCP/IP协议簇,它帮助每台计算 ...
- Spring Autowiring by Constructor
In Spring, "Autowiring by Constructor" is actually autowiring by Type in constructor argum ...
- 【C++专题】static_cast, dynamic_cast, const_cast探讨
首先回顾一下C++类型转换: C++类型转换分为:隐式类型转换和显式类型转换 第1部分. 隐式类型转换 又称为“标准转换”,包括以下几种情况:1) 算术转换(Arithmetic conversion ...
- OAuth 2.0介绍学习
OAuth2.0是OAuth协议的下一版本,但不向后兼容OAuth 1.0即完全废止了OAuth1.0. OAuth 2.0关注客户端开发者的简易性.要么通过组织在资源拥有者和HTTP服务商之间的被批 ...
- jQuery jsonp跨域请求
跨域的安全限制都是对浏览器端来说的,服务器端是不存在跨域安全限制的. 浏览器的同源策略限制从一个源加载的文档或脚本与来自另一个源的资源进行交互. 如果协议,端口和主机对于两个页面是相同的,则两个页面具 ...
- 字串数_hdu_1261(大数极致).java
字串数 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...
- 用C#调用蓝牙编程
2013-04-22 09:41:06 什么是蓝牙? 现在只能手机这么发达,蓝牙对我们来说肯定不陌生.我来介绍一下官方概念: 蓝牙,是一种支持设备短距离通信(一般10m内)的无线电技术.能在包括移动电 ...