1. 自连接

假设存在如下文件:

[root@bluejoe0 ~]# cat categories.csv
1,生活用品,0
2,数码用品,1
3,手机,2
4,华为Mate7,3

每一行的格式为:类别ID,类别名称,父类ID

现在欲输出每个类别的父类别的名称,类似于SQL的自连接,注意到join的外键其实是父类ID

首先生成“父类ID->子类ID,子类名称”

val categories=sc.textFile("/root/categories.csv")

val left = categories.map(_.split(",")).map(x=>(x(2)->Map("id"->x(0),"name"->x(1))))

left的内容为:

Array((0,Map(id -> 1, name -> 生活用品)), (1,Map(id -> 2, name -> 数码用品)), (2,Map(id -> 3, name -> 手机)), (3,Map(id -> 4, name -> 华为Mate7)))

接着生成“父类ID->父类ID,父类名称”

val right = categories.map(_.split(",")).map(x=>(x(0)->Map("pid"->x(0),"pname"->x(1))))

right的内容为:

Array((1,Map(pid -> 1, pname -> 生活用品)), (2,Map(pid -> 2, pname -> 数码用品)), (3,Map(pid -> 3, pname -> 手机)), (4,Map(pid -> 4, pname -> 华为Mate7)))

接下来,将这两个RDD进行合并,并按照key(key都是父类ID)进行reduce:

val merged = (left++right).reduceByKey(_++_)

merged的内容为:

Array((4,Map(pid -> 4, pname -> 华为Mate7)), (0,Map(id -> 1, name -> 生活用品)), (1,Map(id -> 2, name -> 数码用品, pid -> 1, pname -> 生活用品)), (2,Map(id -> 3, name -> 手机, pid -> 2, pname -> 数码用品)), (3,Map(id -> 4, name -> 华为Mate7, pid -> 3, pname -> 手机)))

搞定!!

可以采用flatMap来简化以上的写法:

val merged = categories.map(_.split(",")).flatMap((x)=>Array(x(2)->Map("id"->x(0),"name"->x(1)), x(0)->Map("pid"->x(0),"pname"->x(1)))).reduceByKey(_++_)

结果是一样一样的!!当然代码的可读性大打折扣了~~~

2. 两张表连接

基于spark实现表的join操作的更多相关文章

  1. hive:join操作

    hive的多表连接,都会转换成多个MR job,每一个MR job在hive中均称为Join阶段.按照join程序最后一个表应该尽量是大表,因为join前一阶段生成的数据会存在于Reducer 的bu ...

  2. 性能调优7:多表连接 - join

    在产品环境中,往往存在着大量的表连接情景,不管是inner join.outer join.cross join和full join(逻辑连接符号),在内部都会转化为物理连接(Physical Joi ...

  3. 基于双下划线的跨表查询 (join查询)

    因为你的数据库中的查询就是重点  那么你的django提供的orm也是查询语句最重点 ,也提供的查询方法比较的多,下面我们学习下类似于MYSQL的连表(join)查询 Django 还提供了一种直观而 ...

  4. Spark学习之路(十二)—— Spark SQL JOIN操作

    一. 数据准备 本文主要介绍Spark SQL的多表连接,需要预先准备测试数据.分别创建员工和部门的Datafame,并注册为临时视图,代码如下: val spark = SparkSession.b ...

  5. Spark 系列(十二)—— Spark SQL JOIN 操作

    一. 数据准备 本文主要介绍 Spark SQL 的多表连接,需要预先准备测试数据.分别创建员工和部门的 Datafame,并注册为临时视图,代码如下: val spark = SparkSessio ...

  6. Spark(八)【利用广播小表实现join避免Shuffle】

    目录 使用场景 核心思路 代码演示 正常join 正常left join 广播:join 广播:left join 不适用场景 使用场景 大表join小表 只能广播小表 普通的join是会走shuff ...

  7. 基于CDH5.x 下面使用eclipse 操作hive 。使用java通过jdbc连接HIVESERVICE 创建表

    基于CDH5.x 下面使用eclipse 操作hive .使用java通过jdbc连接HIVESERVICE 创建表 import java.sql.Connection; import java.s ...

  8. Spark Shuffle原理、Shuffle操作问题解决和参数调优

    摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...

  9. Spark 键值对RDD操作

    键值对的RDD操作与基本RDD操作一样,只是操作的元素由基本类型改为二元组. 概述 键值对RDD是Spark操作中最常用的RDD,它是很多程序的构成要素,因为他们提供了并行操作各个键或跨界点重新进行数 ...

随机推荐

  1. javascript活动对象的理解——伪单例模式

    在自己研究javascript各种设计模式的过程中,偶然写出的一段代码让自己理解的更深刻了,之所以称之为伪单例模式,是因为这段代码造成的结果很想单例模式,但是实际上是活动对象捣乱所造成的误会. 代码很 ...

  2. JSP学习笔记2

    <JAVA遇见HTML——JSP篇>学习笔记(下) 1.Javabean Javabeans就是符合某种规范的java类,使用Javabeans的好处是[解决代码的重复编写],减少代码冗余 ...

  3. Hadoop MapReduce概念学习系列之mr程序详谈(二十三)

    这个暂时,没写好. K1,v1 这是增强的for循环. for(Sting w : words) { } 迭代器里,前面,放的是什么类型,后面,迭代的是谁.

  4. A Tour of Go Methods and Interfaces

    The next group of slides covers methods and interfaces, the constructs that define objects and their ...

  5. Go: using a pointer to array

    下面的不是指针指向数组,而是指针指向Slice I'm having a little play with google's Go language, and I've run into someth ...

  6. python 递归函数

    在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. 举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出: f ...

  7. CSS背景与列表

    CSS中背景的使用 CSS中列表的使用 15.1 CSS中背景的使用         属性名称                             属性值                      ...

  8. Visual C#使用DirectX实现视频播放

    Visual C#使用DirectX实现视频播放 visual|视频播放 - 很多人第一次接触到DirectX大都是通过游戏,至于安装.升级DirectX的原因无非是满足游戏运行的需要.Direct ...

  9. JAVA常用设计模式整理

    设计模式:一个程序员对设计模式的理解:“不懂”为什么要把很简单的东西搞得那么复杂.后来随着软件开发经验的增加才开始明白我所看到的“复杂”恰恰就是设计模式的精髓所在,我所理解的“简单”就是一把钥匙开一把 ...

  10. OC语言--NSFileManager&amp; NSFileHandle

    1.关于文件的介绍 ->什么是文件: 文件概念, 广义文件. 狭义文件(磁盘文件). 文件常见的使用操作(可用命令行演示文件操作的使用场景). ->什么是路径: 简单来说就是,在系统中,要 ...