Codeforces 528E Triangles 3000 - 计算几何
显然$S=\frac{1}{2}ah$是不可用的。(压根感觉不可优化)
考虑向量的做法:$S = \frac{1}{2}(A \times B + B \times C + C\times A)$。(相当于把一个三角形拆成了三个以原点作为其中一个顶点的"有向"三角形)
于是考虑利用向量叉积对向量加法的分配律进行优化。
枚举第一条直线,剩下的直线按照极角序加入,不断计算交点和有向面积。
对于直线的方向,我是根据原点在直线的哪一侧决定的。(比如定向后,原点在它左侧)
然后画三条直线相交,讨论原点在哪,然后再讨论怎么计算有向面积。
画一张图仅供参考,1和2表示是交点被计算的顺序。
开心地发现原点在三角形内部的时候计算叉积的时候需要取相反数计入答案。
这很烦。所以取一个超级远的地方的点作为原点就可以成功避开了这个问题。
Code
/**
* Codeforces
* Problem#528E
* Accepted
* Time: 78ms
* Memory: 100k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; //Comparison of floating point constants
const double eps = 1e-;
//π
const double pi = acos((double)-); //Define the points and the vectors
typedef class Point {
public:
double x;
double y;
Point(const double x = 0.0, const double y = 0.0):x(x), y(y) { }
}Point, Vector; const Point O(1e7, 1e7); Vector operator + (Vector a, Vector b) {
return Vector(a.x + b.x, a.y + b.y);
} Vector operator - (Vector a, Vector b) {
return Vector(a.x - b.x, a.y - b.y);
} Vector operator * (Vector a, double b) {
return Vector(a.x * b, a.y * b);
} Vector operator * (double b, Vector a) {
return Vector(a.x * b, a.y * b);
} Vector operator / (Vector a, double b) {
return Vector(a.x / b, a.y / b);
} Vector operator - (Vector a) {
return Vector(-a.x, -a.y);
} int dcmp(double x) {
if(fabs(x) < eps) return ;
return (x < ) ? (-) : ();
} double Dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
} double Cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
} double Area(Point a, Point b, Point c) {
return fabs(Cross(b - a, c - a) / );
} Point getLineIntersection(Point A, Vector v, Point B, Vector u) {
Vector w = B - A;
double t = (Cross(w, u) / Cross(v, u));
return A + t * v;
} typedef class Line {
public:
Point p;
Vector v;
double ang;
int id; Line() { }
Line(int a, int b, int c, int id):id(id) {
if (!b) {
p = Point(c * 1.0 / a, );
v = Point(, );
} else {
p = Point(, c * 1.0 / b);
v = Point(-b, a);
}
if (Cross(O - p, v) > )
v = -v;
ang = atan2(v.y, v.x);
} boolean operator < (Line b) const {
return ang < b.ang;
}
}Line; ostream& operator << (ostream& os, Point p) {
os << "(" << p.x << " " << p.y << ")";
return os;
} int n;
Line *ls; inline void init() {
scanf("%d", &n);
ls = new Line[(n + )];
for (int i = , a, b, c; i <= n; i++) {
scanf("%d%d%d", &a, &b, &c);
ls[i] = Line(a, b, c, i);
}
} double res = 0.0;
inline void solve() {
sort(ls + , ls + n + );
// for (int i = 1; i <= n; i++)
// cerr << ls[i].p << " " << ls[i].v << " " << ls[i].ang << endl;
for (int i = ; i <= n; i++) {
Point sP(, ), P;
for (int j = i + ; j <= n; j++) {
P = getLineIntersection(ls[i].p, ls[i].v, ls[j].p, ls[j].v) - O;
// int d = dcmp(Cross(ls[i].v, ls[j].v));
res += Cross(sP, P);
sP = sP + P;
}
for (int j = ; j < i; j++) {
P = getLineIntersection(ls[i].p, ls[i].v, ls[j].p, ls[j].v) - O;
// int d = dcmp(Cross(ls[i].v, ls[j].v));
res += Cross(sP, P);
sP = sP + P;
}
}
printf("%.9lf", res * / n / (n - ) / (n - ));
} int main() {
init();
solve();
return ;
}
Codeforces 528E Triangles 3000 - 计算几何的更多相关文章
- 【CF528E】Triangles 3000(计算几何)
[CF528E]Triangles 3000(计算几何) 题面 CF 平面上有若干条直线,保证不平行,不会三线共点. 求任选三条直线出来围出的三角形的面积的期望. 题解 如果一定考虑直接计算这个三角形 ...
- Codeforces 15E Triangles 【组合计数】
Codeforces 15E Triangles Last summer Peter was at his granny's in the country, when a wolf attacked ...
- CodeForces 682E Alyona and Triangles (计算几何)
Alyona and Triangles 题目连接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/J Description You ar ...
- Codeforces Round #296 (Div. 1) E. Triangles 3000
http://codeforces.com/contest/528/problem/E 先来吐槽一下,一直没机会进div 1, 马力不如当年, 这场题目都不是非常难,div 2 四道题都是水题! 题目 ...
- Codeforces 15E Triangles - 组合数学
Last summer Peter was at his granny's in the country, when a wolf attacked sheep in the nearby fores ...
- ACM学习历程——UVA10112 Myacm Triangles(计算几何,多边形与点的包含关系)
Description Problem B: Myacm Triangles Problem B: Myacm Triangles Source file: triangle.{c, cpp, j ...
- CF528E Triangles 3000
cf luogu 既然要求三角形面积,不如考虑三角形的面积公式.因为是三条直线,所以可以考虑利用三个交点来算面积,如果这个三角形按照逆时针方向有\(ABC\)三点,那么他的面积为\(\frac{\ve ...
- Codeforces Gym 100733A Shitália 计算几何
ShitáliaTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.acti ...
- Codeforces Gym 100286A. Aerodynamics 计算几何 求二维凸包面积
Problem A. AerodynamicsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/co ...
随机推荐
- 第七天 py
- K - Heavy Cargo dijkstar
来源poj2263 Big Johnsson Trucks Inc. is a company specialized in manufacturing big trucks. Their lates ...
- Piggy-Bank 完全背包
来源hdu1114 Problem Description Before ACM can do anything, a budget must be prepared and the necessar ...
- mobx 添加 isEmpty 装饰器
避免 obj.xxx && obj.xxx.length 这样的写法 store import * as u from "lodash"; function isE ...
- react使用apollo简单的获取列表
react yarn add apollo-boost apollo-client react-apollo apollo-cache-inmemory apollo-link-http graphq ...
- C#实现WinForm禁止最大化、最小化、双击标题栏、双击图标等操作的方法
from:http://www.jb51.net/article/71319.htm 本文实例讲述了C#实现WinForm禁止最大化.最小化.双击标题栏.双击图标等操作的方法.分享给大家供大家参考.具 ...
- 清除 System.Web.Caching.Cache 以"xxx"开头的缓存
public static void ClearStartCache(string keyStart) { List<string> cacheKeys = new List<str ...
- SQL中什么时候需要使用游标?使用游标的步骤
https://zhidao.baidu.com/question/568932670.html 例子table1结构如下id intname varchar(50) declare @id intd ...
- Linux下的文件系统2
2017-03-13 上文针对VFS的基本信息做了介绍,并简单介绍了VFS涉及的几个数据机构,本节结合LInux源码,对各个结构之间的关系进行分析. 一.总体架构图 总体架构图如上图所示,结合进程访问 ...
- python框架之Flask(2)-路由和视图&Session
路由和视图 这一波主要是通过看源码加深对 Flask 中路由和视图的了解,可以先回顾一下装饰器的知识:[装饰器函数与进阶] 路由设置的两种方式 # 示例代码 from flask import Fla ...