题目传送门

  传送点I

  传送点II

  传送点III

题目大意

  给定$n$的平面上的直线,保证没有三条直线共点,两条直线平行。问随机选出3条直线交成的三角形面积的期望。

  显然$S=\frac{1}{2}ah$是不可用的。(压根感觉不可优化)

  考虑向量的做法:$S = \frac{1}{2}(A \times B + B \times C + C\times A)$。(相当于把一个三角形拆成了三个以原点作为其中一个顶点的"有向"三角形)

  于是考虑利用向量叉积对向量加法的分配律进行优化。

  枚举第一条直线,剩下的直线按照极角序加入,不断计算交点和有向面积。

  对于直线的方向,我是根据原点在直线的哪一侧决定的。(比如定向后,原点在它左侧)

  然后画三条直线相交,讨论原点在哪,然后再讨论怎么计算有向面积。

  画一张图仅供参考,1和2表示是交点被计算的顺序。

  开心地发现原点在三角形内部的时候计算叉积的时候需要取相反数计入答案。

  这很烦。所以取一个超级远的地方的点作为原点就可以成功避开了这个问题。

Code

 /**
* Codeforces
* Problem#528E
* Accepted
* Time: 78ms
* Memory: 100k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; //Comparison of floating point constants
const double eps = 1e-;
//π
const double pi = acos((double)-); //Define the points and the vectors
typedef class Point {
public:
double x;
double y;
Point(const double x = 0.0, const double y = 0.0):x(x), y(y) { }
}Point, Vector; const Point O(1e7, 1e7); Vector operator + (Vector a, Vector b) {
return Vector(a.x + b.x, a.y + b.y);
} Vector operator - (Vector a, Vector b) {
return Vector(a.x - b.x, a.y - b.y);
} Vector operator * (Vector a, double b) {
return Vector(a.x * b, a.y * b);
} Vector operator * (double b, Vector a) {
return Vector(a.x * b, a.y * b);
} Vector operator / (Vector a, double b) {
return Vector(a.x / b, a.y / b);
} Vector operator - (Vector a) {
return Vector(-a.x, -a.y);
} int dcmp(double x) {
if(fabs(x) < eps) return ;
return (x < ) ? (-) : ();
} double Dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
} double Cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
} double Area(Point a, Point b, Point c) {
return fabs(Cross(b - a, c - a) / );
} Point getLineIntersection(Point A, Vector v, Point B, Vector u) {
Vector w = B - A;
double t = (Cross(w, u) / Cross(v, u));
return A + t * v;
} typedef class Line {
public:
Point p;
Vector v;
double ang;
int id; Line() { }
Line(int a, int b, int c, int id):id(id) {
if (!b) {
p = Point(c * 1.0 / a, );
v = Point(, );
} else {
p = Point(, c * 1.0 / b);
v = Point(-b, a);
}
if (Cross(O - p, v) > )
v = -v;
ang = atan2(v.y, v.x);
} boolean operator < (Line b) const {
return ang < b.ang;
}
}Line; ostream& operator << (ostream& os, Point p) {
os << "(" << p.x << " " << p.y << ")";
return os;
} int n;
Line *ls; inline void init() {
scanf("%d", &n);
ls = new Line[(n + )];
for (int i = , a, b, c; i <= n; i++) {
scanf("%d%d%d", &a, &b, &c);
ls[i] = Line(a, b, c, i);
}
} double res = 0.0;
inline void solve() {
sort(ls + , ls + n + );
// for (int i = 1; i <= n; i++)
// cerr << ls[i].p << " " << ls[i].v << " " << ls[i].ang << endl;
for (int i = ; i <= n; i++) {
Point sP(, ), P;
for (int j = i + ; j <= n; j++) {
P = getLineIntersection(ls[i].p, ls[i].v, ls[j].p, ls[j].v) - O;
// int d = dcmp(Cross(ls[i].v, ls[j].v));
res += Cross(sP, P);
sP = sP + P;
}
for (int j = ; j < i; j++) {
P = getLineIntersection(ls[i].p, ls[i].v, ls[j].p, ls[j].v) - O;
// int d = dcmp(Cross(ls[i].v, ls[j].v));
res += Cross(sP, P);
sP = sP + P;
}
}
printf("%.9lf", res * / n / (n - ) / (n - ));
} int main() {
init();
solve();
return ;
}

Codeforces 528E Triangles 3000 - 计算几何的更多相关文章

  1. 【CF528E】Triangles 3000(计算几何)

    [CF528E]Triangles 3000(计算几何) 题面 CF 平面上有若干条直线,保证不平行,不会三线共点. 求任选三条直线出来围出的三角形的面积的期望. 题解 如果一定考虑直接计算这个三角形 ...

  2. Codeforces 15E Triangles 【组合计数】

    Codeforces 15E Triangles Last summer Peter was at his granny's in the country, when a wolf attacked ...

  3. CodeForces 682E Alyona and Triangles (计算几何)

    Alyona and Triangles 题目连接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/J Description You ar ...

  4. Codeforces Round #296 (Div. 1) E. Triangles 3000

    http://codeforces.com/contest/528/problem/E 先来吐槽一下,一直没机会进div 1, 马力不如当年, 这场题目都不是非常难,div 2 四道题都是水题! 题目 ...

  5. Codeforces 15E Triangles - 组合数学

    Last summer Peter was at his granny's in the country, when a wolf attacked sheep in the nearby fores ...

  6. ACM学习历程——UVA10112 Myacm Triangles(计算几何,多边形与点的包含关系)

    Description   Problem B: Myacm Triangles Problem B: Myacm Triangles Source file: triangle.{c, cpp, j ...

  7. CF528E Triangles 3000

    cf luogu 既然要求三角形面积,不如考虑三角形的面积公式.因为是三条直线,所以可以考虑利用三个交点来算面积,如果这个三角形按照逆时针方向有\(ABC\)三点,那么他的面积为\(\frac{\ve ...

  8. Codeforces Gym 100733A Shitália 计算几何

    ShitáliaTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.acti ...

  9. Codeforces Gym 100286A. Aerodynamics 计算几何 求二维凸包面积

    Problem A. AerodynamicsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/co ...

随机推荐

  1. git clean(转载)

    git clean命令用来从你的工作目录中删除所有没有tracked过的文件. git clean经常和git reset --hard一起结合使用. 记住reset只影响被track过的文件, 所以 ...

  2. C++对windows控制面板的操作

    经常碰到程序无法卸载, 就老是骂微软搞的什么安装方式,安装好了不能卸载. 后来就打算研究一下windows是如何卸载程序的,一个程序安装完后留下了什么信息用于后面的卸载. 研究对象win7 64位, ...

  3. bootstrap滚动监视原理实现

    最近在公司实习,刚好写了一个静态的网页,用到了滚动监视,就自己写了个监视,话不多说直接进入正题 $(function () { var $root = $("html,body") ...

  4. php代码画足球场

    用代码画了个足球场 原图: 代码画出的效果图: 代码如下: // 创建一个 200X200 的图像 $img = imagecreate(800, 500); // 分配颜色 $bg = imagec ...

  5. [Educational Round 3][Codeforces 609F. Frogs and mosquitoes]

    这题拖了快一周_(:з」∠)_就把这货单独拿出来溜溜吧~ 本文归属:Educational Codeforces Round 3 题目链接:609F - Frogs and mosquitoes 题目 ...

  6. jsonp 的实质

    发送 get请求,可以通过 浏览器输入 url地址,也可以在 javascript 脚本中手动发送 ajax. 或者也可以在 Html网页中定义一个 带 src的 Html 标签,比如 <img ...

  7. 11.vue 数据交互

    vue new Vue({ el,选择器 string/obj 不能选择html/body data, methods, template string/obj //生命周期 -- 虚拟DOM 1.初 ...

  8. 14:CSS3 渐变(gradient)与 过度(transition)、CSS3 的2D动画

    14:CSS3 渐变 CSS3 渐变(gradient)可以让你在两个或多个指定的颜色之间显示平稳的过渡. 以前,你必须使用图像来实现这些效果,现在通过使用 CSS3 的渐变(gradients)即可 ...

  9. 用js实现二维数组的旋转

    我最近因为做了几个小游戏,用到了二维数组,其中有需求将这个二维数组正翻转 90°,-90°,180°. 本人是笨人,写下了存起来. 定义的基本二位数组渲染出来是这种效果. 现在想实现的结果是下面的效果 ...

  10. 利用python+selenium在pycharm下进行页面登陆的半自动测试

    很久没有写了,现在正式入职,准备好好干,加油! 我的第一个较正式的测试代码: from selenium import webdriverimport unittestimport sysimport ...