多线程类似于同时执行多个不同程序,多线程运行有如下优点:

  • 使用线程可以把占据长时间的程序中的任务放到后台去处理。
  • 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度
  • 程序的运行速度可能加快
  • 在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源如内存占用等等。

Python中使用线程有两种方式:函数或者用类来包装线程对象。

函数式:调用thread模块中的start_new_thread()函数来产生新线程。语法如下:

thread.start_new_thread ( function, args[, kwargs] )

参数说明:

  • function - 线程函数。
  • args - 传递给线程函数的参数,他必须是个tuple类型。
  • kwargs - 可选参数。

使用Thread模块创建线程

import  _thread
import time # 定义一个函数
def print_time(threadName , delay):
count = 0
while count < 5:
time.sleep(delay)
count += 1
print(threadName,count) #创建两个线程
try:
_thread.start_new_thread(print_time,("Thread-1",2))
_thread.start_new_thread(print_time,("Thread-2",4))
except:
print("Error : unable to start thread")
while 1:
pass

结果:

Thread-1 1
Thread-1 2
Thread-2 1
Thread-1 3
Thread-1 4
Thread-2 2
Thread-1 5
Thread-2 3
Thread-2 4
Thread-2 5

使用Threading模块创建线程

import  threading
import time exitFlag = 0 class myThread(threading.Thread): # 继承父类threading.Thread
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter def run(self): # 把要执行的代码写到run函数里面 线程在创建后会直接运行run函数
print("Starting " + self.name)
print_time(self.name, self.counter, 5)
print("Exiting " + self.name) def print_time(threadName, delay, counter):
while counter:
if exitFlag:
(threading.Thread).exit()
time.sleep(delay)
print("%s: %s" % (threadName, time.ctime(time.time())))
counter -= 1 # 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2) # 开启线程
thread1.start()
thread2.start() print("Exiting Main Thread")

结果:

Starting Thread-1
Starting Thread-2
Exiting Main Thread
Thread-1: Thu Mar 21 09:10:03 2013
Thread-1: Thu Mar 21 09:10:04 2013
Thread-2: Thu Mar 21 09:10:04 2013
Thread-1: Thu Mar 21 09:10:05 2013
Thread-1: Thu Mar 21 09:10:06 2013
Thread-2: Thu Mar 21 09:10:06 2013
Thread-1: Thu Mar 21 09:10:07 2013
Exiting Thread-1
Thread-2: Thu Mar 21 09:10:08 2013
Thread-2: Thu Mar 21 09:10:10 2013
Thread-2: Thu Mar 21 09:10:12 2013
Exiting Thread-2

线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。

使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。如下:

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。

考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。

那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。

经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

import  threading
import time class myThread(threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter def run(self):
print("Starting " + self.name)
# 获得锁,成功获得锁定后返回True
# 可选的timeout参数不填时将一直阻塞直到获得锁定
# 否则超时后将返回False
threadLock.acquire()
print_time(self.name, self.counter, 3)
# 释放锁
threadLock.release() def print_time(threadName, delay, counter):
while counter:
time.sleep(delay)
print("%s: %s" % (threadName, time.ctime(time.time())))
counter -= 1 threadLock = threading.Lock()
threads = [] # 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2) # 开启新线程
thread1.start()
thread2.start() # 添加线程到线程列表
threads.append(thread1)
threads.append(thread2) # 等待所有线程完成
for t in threads:
t.join()
print("Exiting Main Thread")

结果:

Starting Thread-1
Starting Thread-2
Thread-1: Tue Apr 24 11:09:33 2018
Thread-1: Tue Apr 24 11:09:34 2018
Thread-1: Tue Apr 24 11:09:35 2018
Thread-2: Tue Apr 24 11:09:37 2018
Thread-2: Tue Apr 24 11:09:39 2018
Thread-2: Tue Apr 24 11:09:41 2018
Exiting Main Thread

线程优先级队列( Queue)

Python的Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。

Queue模块中的常用方法:

  • Queue.qsize() 返回队列的大小
  • Queue.empty() 如果队列为空,返回True,反之False
  • Queue.full() 如果队列满了,返回True,反之False
  • Queue.full 与 maxsize 大小对应
  • Queue.get([block[, timeout]])获取队列,timeout等待时间
  • Queue.get_nowait() 相当Queue.get(False)
  • Queue.put(item) 写入队列,timeout等待时间
  • Queue.put_nowait(item) 相当Queue.put(item, False)
  • Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
  • Queue.join() 实际上意味着等到队列为空,再执行别的操作
import queue
import threading
import time exitFlag = 0 class myThread(threading.Thread):
def __init__(self, threadID, name, q):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.q = q def run(self):
print("Starting " + self.name)
process_data(self.name, self.q)
print("Exiting " + self.name) def process_data(threadName, q):
while not exitFlag:
queueLock.acquire()
if not workQueue.empty():
data = q.get()
queueLock.release()
print("%s processing %s" % (threadName, data))
else:
queueLock.release()
time.sleep(1) threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = queue.Queue(10)
threads = []
threadID = 1 # 创建新线程
for tName in threadList:
thread = myThread(threadID, tName, workQueue)
thread.start()
threads.append(thread)
threadID += 1 # 填充队列
queueLock.acquire()
for word in nameList:
workQueue.put(word)
queueLock.release() # 等待队列清空
while not workQueue.empty():
pass # 通知线程是时候退出
exitFlag = 1 # 等待所有线程完成
for t in threads:
t.join()
print("Exiting Main Thread")

结果:

Starting Thread-1
Starting Thread-2
Starting Thread-3
Thread-2 processing One
Thread-1 processing Two
Thread-3 processing Three
Thread-3 processing Four
Thread-1 processing Five
Exiting Thread-2
Exiting Thread-3
Exiting Thread-1
Exiting Main Thread

Python多线程基本操作的更多相关文章

  1. 进程,线程,GIL,Python多线程,生产者消费者模型都是什么鬼

    1. 操作系统基本知识,进程,线程 CPU是计算机的核心,承担了所有的计算任务: 操作系统是计算机的管理者,它负责任务的调度.资源的分配和管理,统领整个计算机硬件:那么操作系统是如何进行任务调度的呢? ...

  2. 浅析Python多线程

    学习Python多线程的资料很多,吐槽Python多线程的博客也不少.本文主要介绍Python多线程实际应用,且假设读者已经了解多线程的基本概念.如果读者对进程线程概念不甚了解,可参见知名博主 阮一峰 ...

  3. python多线程学习记录

    1.多线程的创建 import threading t = t.theading.Thread(target, args--) t.SetDeamon(True)//设置为守护进程 t.start() ...

  4. python多线程编程

    Python多线程编程中常用方法: 1.join()方法:如果一个线程或者在函数执行的过程中调用另一个线程,并且希望待其完成操作后才能执行,那么在调用线程的时就可以使用被调线程的join方法join( ...

  5. Python 多线程教程:并发与并行

    转载于: https://my.oschina.net/leejun2005/blog/398826 在批评Python的讨论中,常常说起Python多线程是多么的难用.还有人对 global int ...

  6. python多线程

    python多线程有两种用法,一种是在函数中使用,一种是放在类中使用 1.在函数中使用 定义空的线程列表 threads=[] 创建线程 t=threading.Thread(target=函数名,a ...

  7. python 多线程就这么简单(转)

    多线程和多进程是什么自行google补脑 对于python 多线程的理解,我花了很长时间,搜索的大部份文章都不够通俗易懂.所以,这里力图用简单的例子,让你对多线程有个初步的认识. 单线程 在好些年前的 ...

  8. python 多线程就这么简单(续)

    之前讲了多线程的一篇博客,感觉讲的意犹未尽,其实,多线程非常有意思.因为我们在使用电脑的过程中无时无刻都在多进程和多线程.我们可以接着之前的例子继续讲.请先看我的上一篇博客. python 多线程就这 ...

  9. python多线程监控指定目录

    import win32file import tempfile import threading import win32con import os dirs=["C:\\WINDOWS\ ...

随机推荐

  1. python 字节转换成图像

    python 字节转换成图像 使用base64 1.图片转成字节使用:  base64.b64encode() 2.字节转成图片: base64.b64decode() 图片字节串: iVBORw0K ...

  2. 使用msf对tomcat测试

    1.1 使用nmap命令对目标主机进行扫描.单击桌面空白处,右键菜单选择"在终端中打开". 1.2 在终端中输入命令"nmap –sV 192.168.1.3" ...

  3. web前端学习历程--跨域问题

    一.同源策略 一个页面的ajax只能获取这个页面相同源(协议.域名.端口号都必须相同)的数据. 二.jsonp方法 1.json和jsonp JSON(JavaScript Object Notati ...

  4. git常用操作记录

    之前的多人项目大多使用了SVN作为版本控制,自己只会用eclipse连接GitHub的操作.这次项目采用了git作为版本控制系统,所以学会了很多新操作,这里权当记录,以备后用. git的一些基本操作可 ...

  5. flutter key

    随意点开一个Widget,就会发现,可以传递一个参数Key.那这个Key到底是干啥子,有什么用呢? Flutter是受React启发的,所以Virtual Dom的diff算法也参考过来了(应该是略有 ...

  6. while 运算符 初始编码 python2和python3的区别

    1.while 循环 2.运算符 3.初始编码 4.python2 和python3的区别 1.while循环: 关键词:while[循环]         break[跳出循环]         c ...

  7. STS的安装与简单使用

    一,STS下载与安装 1.下载地址:http://spring.io/tools3/sts/all 2.选择对应版本安装或者解压 二,STS简单使用 1.快捷方法 (1)main+alt+/+回车 = ...

  8. 【BZOJ2301】Problem B

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  9. jquery easyui的应用-2

    有两个版本: freeware edition, commercial edition easyui的 datagrid 实际上是一个table, 其数据来源 通过 url属性来从后台的php页面 获 ...

  10. New需谨慎

    New is Glue When you’re working in a strongly typed language like C# or Visual Basic, instantiating ...