static_assert enable_if 模板编译期检查
conceptC++
http://www.generic-programming.org/faq/?category=conceptcxx
Checking Concept Without Concepts in C++
By Anthony Williams, September 22, 2010
Get the benefits of C++0x but without the work
Anthony Williams is author of the book C++ Concurrency in Action and of the just::thread C++0x thread library. He can be contacted at anthony.ajw@gmail.com
"Concepts" was set to be one of the major selling points of the new C++0x standard, until it was removed from the draft in July 2009. The "Concepts" feature promised better compile-time checking of templates, and the ability to overload functions based on whether or not their parameters supported specific templates.
In this article I look at some techniques for obtaining some of the benefits of concepts, with the facilities we already have in C++. Source code that illustrates these techniques is listed at the end of this article.
Basic Tools
The basic tools we need for concept checking and concept-based overloading are static_assert, enable_if, and a particular property of template instantiation dubbed SFINAE (short for "Substitution Failure Is Not An Error").static_assert is useful for the checking, enable_if for the overloading. SFINAE is the mechanism that makesenable_if work, and can be used to write additional checks for testing with static_assert or enable_if.
static_assert is a new C++0x language feature, and is available in the latest versions of some compilers, such as Microsoft Visual Studio 2010 and g++ 4.3 or later. It allows you to specify a boolean constant expression and an error message -- if the constant expression evaluates to False at compile time then the compilation fails and the specified error message is output. For example, this simple program compiled with gcc -std=c++0x:
int main()
{
static_assert(false,"your message goes here");
}
yields this error message:
test.cpp: In function 'int main()'
test.cpp:3: error: static assertion failed: "your message goes here"
The constant expression can of course depend on template parameters, and that's where the checking comes in: if you put a static_assert in a template then the compilation will fail if the specified condition is not True, and the error message will be a lot clearer than what you would get otherwise.
static_assert works really well with the standard type traits -- you can assert that a given type is convertible tobool, or is derived from a particular base class, or is a POD. Of course, you can also define your own traits for any characteristic that you can build a test for. Later in this article I'll show how you can build a test for the presence of particular member functions.
You could, for example enforce the constraint that a particular template parameter is a POD type, so you can copy instances with memcpy:
template<typename T>
void copy(T const* source,T* dest,unsigned count)
{
static_assert(std::is_pod<T>::value,"T must be a POD");
memcpy(dest,source,count*sizeof(T));
}
is
If you try and use this copy function with a non-POD type such as std::string, then you will get a compilation error.
The Boost Concept Check Library provides an alternative to static_assert for checking for concept conformance. Just like static_assert, it generates compiler errors if the concept is not matched. However, it may provide an easier way of specifying the constraints than plain static_assert if concept-based overloading is not required.
Whereas static_assert is all about hard and fast requirements, enable_if is about choices. You use it to enable certain function overloads if and only if a given property is True. This enables you to specify different versions of an algorithm based on the properties of the template parameters.
For example, you could use enable_if to use memcpy when copying PODs, rather than copying each element individually:
template<typename T>
typename std::enable_if<std::is_pod<T>::value,void>::type
copy(T const* source,T* dest,unsigned count)
{
memcpy(dest,source,count*sizeof(T));
} template<typename T>
typename std::enable_if<!std::is_pod<T>::value,void>::type
copy(T const* source,T* dest,unsigned count)
{
for(unsigned i=0;i<count;++i)
{
*dest++=*source++;
}
}
enable_if is quite simple in and of itself -- if the first template parameter (which must be a boolean constant expression) evaluates to true then the nested "type" member is a typedef to the second template parameter. If the the first parameter evaluates to False then there is no nested "type" member.
The SFINAE rules mean that if enable_if<some-expression,some-type>::type is used in the signature of a function template (as here), then that function overload is discarded if some-expression is False -- that overload is only enabled if some-expression is True.
SFINAEThe basic premise of SFINAE is that when the compiler is deducing the template parameters for a function template from a function call, if the deduced parameters would make the signature invalid then that function template is not considered for overload resolution rather than resulting in a compilation failure. There are limits, and some template instantiation errors will still cause compilation failure, but this is the basic principle that makes enable_if work.
For example, given the function template:
template<typename T>
typename T::type foo(T t)
{}
If you try and call foo(3), then T is deduced to be int. The type int does not have a member called type. The instantiation is therefore invalid when substituting "int" as the template parameter. By the SFINAE rule, this is not an error: instead the overload is ignored. If there is another overload of foo that can match foo(3), then that will be chosen instead. Of course, if there are no other overloads or none of the others match, then you still get a compilation error.
SFINAE does not work if the required instantiation of the function template depends on the instantiation of another template and that instantiation fails; for example:
template<typename T>
struct bar
{
typedef typename T::type type;
}; template<typename T>
typename bar<T>::type foo2(T t)
{
// ...
}
If you call foo2(3), then T is again deduced as int. However, bar<int> cannot be instantiated, since int does not have a member called type. This is a failure in the instantiation of bar<int> , not in the instantiation of foo2<int>, so is a real compiler error, and will not be ignored by SFINAE.
Availability of Features
Newer compilers (such as gcc 4.3 or later, and Microsoft Visual Studio 2010) are starting to provide C++0x features. static_assert is one of the most common C++0x language features added to compilers, but for those compilers that don't have static_assert, you can emulate it with BOOST_STATIC_ASSERT.
enable_if on the other hand is purely a library facility, and was part of the C++ Technical Report 1. As such it is even more widely available as part of the library supplied with compilers. For those compilers that don't provide their own version, it is also available as part of the Boost Library.
--A.W.
static_assert enable_if 模板编译期检查的更多相关文章
- 通过宏封装实现std::format编译期检查参数数量是否一致
背景 std::format在传参数量少于格式串所需参数数量时,会抛出异常.而在大部分的应用场景下,参数数量不一致提供编译报错更加合适,可以促进我们更早发现问题并进行改正. 最终效果 // 测试输出接 ...
- 数值类型中JDk的编译期检查和编译期优化
byte b1 = 5;//编译期检查,判断是否在byte范围内 byte b2 = 5+4;//编译期优化,相当于b2=9 byte b3 = 127;//编译通过,在byte范围内 byte b4 ...
- C++17尝鲜:编译期 if 语句
Constexpr If(编译期 if 语句) 以 if constexpr 打头的 if 语句被称为 Constexpr If. Constexpr If 是C++17所引入的新的语法特性.它为C+ ...
- 简单的说一下:tarits技法就是一种模板元编程,起可以将本来处于运行期的事拉到编译期来做,增加了运行效率。 看以非模板元编程的例子,就是前面的那个例子:
void adance(std::list<int>::iterator& iter, int d) { if(typeid(std::iterator_traits<std ...
- 读书笔记 effective c++ Item 41 理解隐式接口和编译期多态
1. 显示接口和运行时多态 面向对象编程的世界围绕着显式接口和运行时多态.举个例子,考虑下面的类(无意义的类), class Widget { public: Widget(); virtual ~W ...
- c++ 编译期与运行期
分享到 一键分享 QQ空间 新浪微博 百度云收藏 人人网 腾讯微博 百度相册 开心网 腾讯朋友 百度贴吧 豆瓣网 搜狐微博 百度新首页 QQ好友 和讯微博 更多... 百度分享 转自:http://h ...
- 《深入理解Java虚拟机》-----第10章 程序编译与代码优化-早期(编译期)优化
概述 Java语言的“编译期”其实是一段“不确定”的操作过程,因为它可能是指一个前端编译器(其实叫“编译器的前端”更准确一些)把*.java文件转变成*.class文件的过程;也可能是指虚拟机的后端运 ...
- java编译期优化
java语言的编译期其实是一段不确定的操作过程,因为它可以分为三类编译过程: 1.前端编译:把.java文件转变为.class文件 2.后端编译:把字节码转变为机器码 3.静态提前编译:直接把*.ja ...
- C++编译期多态与运行期多态
前言 今日的C++不再是个单纯的"带类的C"语言,它已经发展成为一个多种次语言所组成的语言集合,其中泛型编程与基于它的STL是C++发展中最为出彩的那部分.在面向对象C++编程中, ...
随机推荐
- ORA-01555错误
有这样一种情况 0:00 我们开始查询,查询的数据是100万条 0:01 一个session update了第100万条数据 0:01 update提交了,完成 1:00 我们的查询还在继续,只读到了 ...
- 【JVM】-NO.110.JVM.1 -【hsdis jitwatch 生成查看汇编代码】
Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...
- Mysql InnoDB 数据更新/删除导致锁表
一. 如下对账表数据结构 create table t_cgw_ckjnl ( CNL_CODE ) default ' ' not null comment '通道编码', CNL_PLT_CD ) ...
- 面向对象编程之OC
面向对象概述 面向对象是一种符合人类思想习惯的编程思想.现实生活中存在各种形态不同的事物,这些事物之间存在着各种各样的联系,在程序中使用对象来映射现实中的事物,使用对象的关系来描述事物之间的联系,这种 ...
- Unity之获取资源包的路径
先从缓存中获取,如果获取不到,则从包中获取. 如下: public static string GetAssetBundlePath(string path) { // 先尝试从 persist 目录 ...
- 虚拟机VM三种网络连接方式说明
- C#中哈希表(HashTable)的用法详解以及和Dictionary比较
1. 哈希表(HashTable)简述 在.NET Framework中,Hashtable是System.Collections命名空间提供的一个容器,用于处理和表现类似keyvalue的键值对, ...
- KVO的使用一
概述 KVO即Key-Value Observing,它允许一个对象被另一个对象在改变指定的属性值后进行通知.iOS中的应用场景很多,比如model的值发生变化,controller里对model进行 ...
- Python socket实现处理多个连接
socket实现处理多个连接 实现处理多个连接 使用whlie循环实现多个客户端,排队请求服务端 循环监听端口发送信息(windos,Linux) 1.Linux 系统如果客户端断开连接,会循环 ...
- Linux 系统开启最大线程数 调优
系统最大线程数说明 系统可开启的最大线程数,可根据系统本身负载配置进行调优. 查看系统最大线程数 1.查看系统开启的最大线程数. ulimit -u [root@izbp1brwu1w35r1dmj8 ...