python为我们提供的标准模块concurrent.futures里面有ThreadPoolExecutor(线程池)和ProcessPoolExecutor(进程池)两个模块. 在这个模块里他们俩在用法上是一样的.

concurrent.futures官方文档: https://docs.python.org/dev/library/concurrent.futures.html

#1 介绍
concurrent.futures模块提供了高度封装的异步调用接口
ThreadPoolExecutor:线程池,提供异步调用
ProcessPoolExecutor: 进程池,提供异步调用
Both implement the same interface, which is defined
by the abstract Executor class. #2 基本方法
#submit(fn, *args, **kwargs)
异步提交任务 #map(func, *iterables, timeout=None, chunksize=1)
取代for循环submit的操作 #shutdown(wait=True)
相当于进程池的pool.close()+pool.join()操作
wait=True,等待池内所有任务执行完毕回收完资源后才继续
wait=False,立即返回,并不会等待池内的任务执行完毕
但不管wait参数为何值,整个程序都会等到所有任务执行完毕
submit和map必须在shutdown之前 #result(timeout=None)
取得结果 #add_done_callback(fn)
回调函数
#介绍
The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asynchronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global Interpreter Lock but also means that only picklable objects can be executed and returned. class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None)
An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If max_workers is None or not given, it will default to the number of processors on the machine. If max_workers is lower or equal to 0, then a ValueError will be raised. # 用法示例
from concurrent.futures import ThreadPoolExecutor
import time def func(n):
time.sleep(1)
print(">>>", n)
return n*n if __name__ == '__main__':
t_pool = ThreadPoolExecutor(max_workers=5) # 线程池中最多不要超过cup个数*5
t_list = []
for i in range(20):
res = t_pool.submit(func, i)
t_list.append(res)
t_pool.shutdown() # 等待子线程结束, 再执行父进程 相当于相当于进程池的pool.close()+pool.join()操作
for resl in t_list:
print(resl.result()) # 结果是有序的, 这是因为t_list中的元素就是
# 有序的,所以循环迭代从结果对象中取出的值也是有序的

ThreadPoolExecutor

#介绍
ThreadPoolExecutor is an Executor subclass that uses a pool of threads to execute calls asynchronously.
class concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix='')
An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously. Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O instead of CPU work and the number of workers should be higher than the number of workers for ProcessPoolExecutor. New in version 3.6: The thread_name_prefix argument was added to allow users to control the threading.Thread names for worker threads created by the pool for easier debugging. #用法
与ThreadPoolExecutor相同, 将ThreadPoolExecutor换成Process就可以了

ProcessPoolExecutor

from concurrent.futures import ThreadPoolExecutor
import time def func(n):
time.sleep(1)
print(">>>", n)
return n*n if __name__ == '__main__':
t_pool = ThreadPoolExecutor(max_workers=5)
res_g = t_pool.map(func,range(20))# 取代了for + submit 得到的结果是一个生成器对象
t_pool.shutdown()
print("主线程")
for ress in res_g:
print(ress)

map用法示例

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from multiprocessing import Pool
import requests
import json
import os def get_page(url):
print('<进程%s> get %s' %(os.getpid(),url))
respone=requests.get(url)
if respone.status_code == 200:
return {'url':url,'text':respone.text} def parse_page(res):
res=res.result()
print('<进程%s> parse %s' %(os.getpid(),res['url']))
parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text']))
with open('db.txt','a') as f:
f.write(parse_res) if __name__ == '__main__':
urls=[
'https://www.baidu.com',
'https://www.python.org',
'https://www.openstack.org',
'https://help.github.com/',
'http://www.sina.com.cn/'
] # p=Pool(3)
# for url in urls:
# p.apply_async(get_page,args=(url,),callback=pasrse_page)
# p.close()
# p.join() p=ProcessPoolExecutor(3)
for url in urls:
p.submit(get_page,url).add_done_callback(parse_page) #parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果

回调函数

Python标准模块--concurrent.futures(进程池,线程池)的更多相关文章

  1. Python标准模块--concurrent.futures 进程池线程池终极用法

    concurrent.futures 这个模块是异步调用的机制concurrent.futures 提交任务都是用submitfor + submit 多个任务的提交shutdown 是等效于Pool ...

  2. Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures

    参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...

  3. python 全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当 ...

  4. python全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程 什么是线程? 线程是cpu调度的最小单位 进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的 ...

  5. Python标准模块--concurrent.futures

    1 模块简介 concurrent.futures模块是在Python3.2中添加的.根据Python的官方文档,concurrent.futures模块提供给开发者一个执行异步调用的高级接口.con ...

  6. Python--day41--线程池--python标准模块concurrent.futures

    1,线程池代码示例:(注:进程池的话只要将以下代码中的ThreadPoolExecutor替换成ProcessPoolExecutor即可,这里不演示) import time from concur ...

  7. concurrent.futures模块(进程池/线程池)

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  8. concurrent.futures模块(进程池&线程池)

    1.线程池的概念 由于python中的GIL导致每个进程一次只能运行一个线程,在I/O密集型的操作中可以开启多线程,但是在使用多线程处理任务时候,不是线程越多越好,因为在线程切换的时候,需要切换上下文 ...

  9. Python进阶----异步同步,阻塞非阻塞,线程池(进程池)的异步+回调机制实行并发, 线程队列(Queue, LifoQueue,PriorityQueue), 事件Event,线程的三个状态(就绪,挂起,运行) ,***协程概念,yield模拟并发(有缺陷),Greenlet模块(手动切换),Gevent(协程并发)

    Python进阶----异步同步,阻塞非阻塞,线程池(进程池)的异步+回调机制实行并发, 线程队列(Queue, LifoQueue,PriorityQueue), 事件Event,线程的三个状态(就 ...

随机推荐

  1. java学习之路--面试之多线程基础

    Java多线程面试问题1. 进程和线程之间有什么不同?一个进程是一个独立(self contained)的运行环境,它可以被看作一个程序或者一个应用.而线程是在进程中执行的一个任务.Java运行环境是 ...

  2. web开发中xml的内容

    文档声明(注:文档声明前不能有注释) XML中的元素/标签 注:xmlx中解析程序会将其中的空格与换行当做内容来解析,区分大小写 CDATA区域中的内容不解析

  3. 剑指offer——python【第2题】替换空格

    题目描述 请实现一个函数,将一个字符串中的每个空格替换成“%20”. 例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy. 理解 很容易想到用pytho ...

  4. java学习(一)--- 基础语法

    学习内容来 自菜鸟教程 http://www.runoob.com/java/java-object-classes.html   Java基础 Java:一个Java程序可以认为是一系列的对象组合, ...

  5. linux下部分软件截图

    1.配置环境变量 vi /etc/profile JAVA_HOME=/usr/local/usr_software/jdk_1.8.0.121CLASSPATH=.:$JAVA_HOME/lib/t ...

  6. python全栈开发 * 33 知识点汇总 * 180718

    33 udp协议编码 显示客户端名字,输出带颜色的内容 udp协议的时间同步机制 #一.udp 协议编码 一个服务器,多个客户端#服务器:# import socket# sk=socket.sock ...

  7. HDU 1010生成树

    求起点到终点的最短权值和

  8. PAT1018 Public Bike Management【dfs】【最短路】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805489282433024 题意: 给定一个图,一个目的地和每个节 ...

  9. vivado/FPGA 使用小纪

    1.使用FPGA做为外部控制器的总线译码时,将总线时钟接在全局时钟脚上(MRCC),就算接在了局部时钟(SRCC)上,也要通过BUFG转为全局时钟走线,否则会因为local clk到各部分的时延较大引 ...

  10. 洛谷试炼场 - 关卡1-5 - 简单字符串 - (Done)

    P1055 ISBN号码 #include<bits/stdc++.h> using namespace std; string s; ]={','X'}; int main() { ci ...