故事描述SVM----支持向量机/support vector machine (SVM)
链接:https://www.zhihu.com/question/21094489/answer/86273196
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
在很久以前的情人节,大侠要去救他的爱人,但魔鬼和他玩了一个游戏。
魔鬼在桌子上似乎有规律放了两种颜色的球,说:“你用一根棍分开它们?要求:尽量在放更多球之后,仍然适用。”
<img src="https://pic1.zhimg.com/50/5aff2bcdbe23a8c764a32b1b5fb13b71_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">
于是大侠这样放,干的不错?
<img src="https://pic1.zhimg.com/50/3dbf3ba8f940dfcdaf877de2d590ddd1_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">
然后魔鬼,又在桌上放了更多的球,似乎有一个球站错了阵营。
<img src="https://pic4.zhimg.com/50/0b2d0b26ec99ee40fd14760350e957af_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">
SVM就是试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙。
<img src="https://pic4.zhimg.com/50/4b9e8a8a87c7982c548505574c13dc05_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">
现在即使魔鬼放了更多的球,棍仍然是一个好的分界线。
<img src="https://pic1.zhimg.com/50/7befaafc45763b9c4469abf245dc98cb_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">
然后,在SVM 工具箱中有另一个更加重要的 trick。 魔鬼看到大侠已经学会了一个trick,于是魔鬼给了大侠一个新的挑战。
<img src="https://pic2.zhimg.com/50/558161d10d1f0ffd2d7f9a46767de587_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">
现在,大侠没有棍可以很好帮他分开两种球了,现在怎么办呢?当然像所有武侠片中一样大侠桌子一拍,球飞到空中。然后,凭借大侠的轻功,大侠抓起一张纸,插到了两种球的中间。
<img src="https://pic3.zhimg.com/50/55d7ad2a6e23579b17aec0c3c9135eb3_hd.jpg" data-rawwidth="300" data-rawheight="167" class="content_image" width="300">
现在,从魔鬼的角度看这些球,这些球看起来像是被一条曲线分开了。
<img src="https://pic2.zhimg.com/50/e5d5185561a4d5369f36a9737fc849c6_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">
再之后,无聊的大人们,把这些球叫做 「data」,把棍子 叫做 「classifier」, 最大间隙trick 叫做「optimization」, 拍桌子叫做「kernelling」, 那张纸叫做「hyperplane」。
故事描述SVM----支持向量机/support vector machine (SVM)的更多相关文章
- 支持向量机(Support Vector Machine)-----SVM之SMO算法(转)
此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的 ...
- 支持向量机 support vector machine
SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...
- 【机器学习实战】第6章 支持向量机(Support Vector Machine / SVM)
第6章 支持向量机 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/lates ...
- 关于SVM(support vector machine)----支持向量机的一个故事
一.预告篇: 很久很久以前,有个SVM, 然后,……………………被deep learning 杀死了…………………………………… . 完结……撒花 二.正式篇 好吧,关于支持向量机有一个故事 ,故事是 ...
- 支持向量机(Support Vector Machine,SVM)
SVM: 1. 线性与非线性 核函数: 2. 与神经网络关系 置信区间结构: 3. 训练方法: 4.SVM light,LS-SVM: 5. VC维 u-SVC 与 c-SVC 区别? 除参数不同外, ...
- 机器学习经典算法笔记-Support Vector Machine SVM
可供使用现成工具:Matlab SVM工具箱.LibSVM.SciKit Learn based on python 一 问题原型 解决模式识别领域中的数据分类问题,属于有监督学习算法的一种. 如图所 ...
- 第八篇:支持向量机 (Support Vector Machine)
前言 本文讲解如何使用R语言中e1071包中的SVM函数进行分类操作,并以一个关于鸢尾花分类的实例演示具体分类步骤. 分析总体流程 1. 载入并了解数据集:2. 对数据集进行训练并生成模型:3. 在此 ...
- 支持向量机SVM(Support Vector Machine)
支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...
- Support Vector Machine (1) : 简单SVM原理
目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...
随机推荐
- 【原】The Linux Command Line - Manipulation Files And Directories
cp - Copy Files and directories mv - move/rename files and directories mkdir - create directories rm ...
- ubuntu下搭建svn服务器
[ubuntu下搭建svn服务器] 1.创建目录 mkdir ~/svn/repository/ 2.创建仓库 svnadmin create repository 3.进入 repository/c ...
- mongodb异常恢复
构造mongdb异常 启动mongodb,bash mongodb.sh #!/bin/bash pid_file=/var/run/mongodb/mongod.pid pid_dir=/var/r ...
- Windows 10同步时间的方法
今天在安装了Windows 10 1809(October 2018 update)之后发现时间不能同步,以前并没有出现这种情况. 1) 打开控制面板,找到时钟域地区 2) 选择日期和时间 3) 选择 ...
- C++ 获取字符串中的所有汉字
#include<iostream> using namespace std; int main() { char str[20] = "cd大家好df"; ...
- Curator的cluster,实现多节点数据共享
模拟两个客户端,实现多节点数据共享 package bjsxt.curator.cluster; import org.apache.curator.RetryPolicy; import org.a ...
- spring整合mybatis在使用.properties文件时候遇到的问题
在spring里使用org.mybatis.spring.mapper.MapperScannerConfigurer 进行自动扫描的时候,设置了sqlSessionFactory 的话,可能会导致P ...
- 信号基础知识---单频矩形脉冲信号CW
%CW%参考:声呐技术 P27,31clc;close all;clear all;%参数-------------------------f0=50;T=0.1;%时宽B=1/T;fs=1000;% ...
- 信号基础知识--FFT DFT
clc;close all;clear all; f0=10; fs=100; %采样率 t=1/fs:1/fs:2; %共两秒钟,共200个采样点.采样间隔T=1/100 y ...
- java_19List 集合
1List集合 有序的 collection(也称为序列).此接口的用户可以对列表中每个元素的插入位置进行精确地控制.用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素. 与 s ...