Matlab:导数边界值的有限元(Galerkin)法
tic;
% this method is transform from Galerkin method
%also call it as finit method
%is used for solving two point BVP which is the first and second term.
%this code was writen by HU.D.dong in February 11th 2017
%MATLAB 7.0
clear;
clc;
N=50;
h=1/N;
X=0:h:1;
f=inline('(0.5*pi^2)*sin(0.5*pi.*x)');
%以下是右端向量:
for i=2:N
fun1=@(x) pi^2/2.*sin(pi/2.*x).*(1-(x-X(i))/h);
fun2=@(x) pi^2/2.*sin(pi/2.*x).*((x-X(i-1))/h);
f_phi(i-1,1)=quad(fun1,X(i),X(i+1))+quad(fun2,X(i-1),X(i));
end
funN=@(x) pi^2/2.*sin(pi/2.*x).*(x-X(N))/h;
f_phi(N)=quad(funN,X(N),X(N+1));
%以下是刚度矩阵:
A11=quad(@(x) 2/h+0.25*pi^2*h.*(1-2*x+2*x.^2),0,1);
A12=quad(@(x) -1/h+0.25*pi^2*h.*(1-x).*x,0,1);
ANN=quad(@(x) 1/h+0.25*pi^2*h*x.^2,0,1);
A=diag([A11*ones(1,N-1),ANN],0)+diag(A12*ones(1,N-1),1)+diag(A12*ones(1,N-1),-1);
Numerical_solution=A\f_phi;
Numerical_solution=[0;Numerical_solution];
%Accurate solution on above以下是精确解
%%
for i=1:length(X)
Accurate_solution(i,1)=sin((pi*X(i))/2)/2 - cos((pi*X(i))/2)/2 + exp((pi*X(i))/2)*((exp(-(pi*X(i))/2)*cos((pi*X(i))/2))/2 + (exp(-(pi*X(i))/2)*sin((pi*X(i))/2))/2);
end
figure(1);
grid on;
subplot(1,2,1);
plot(X,Numerical_solution,'ro-',X,Accurate_solution,'b^:');
title('Numerical solutions vs Accurate solutions');
legend('Numerical_solution','Accurate_solution');
subplot(1,2,2);
plot(X,Numerical_solution-Accurate_solution,'b x');
legend('error_solution');
title('error');
toc;
效果图:
Matlab:导数边界值的有限元(Galerkin)法的更多相关文章
- Matlab:导数边界值的有限元(Ritz)法
tic; % this method is transform from Ritz method %is used for solving two point BVP %this code was w ...
- Matlab-7:偏微分方程数值解法-李荣华-有限元解导数边界值的常微分(Galerkin方法)
p47.(实习题-李荣华)用线性元求下列边值问题的数值解 tic; % this method is transform from Galerkin method %also call it as f ...
- 【Matlab】运动目标检测之“光流法”
光流(optical flow) 1950年,Gibson首先提出了光流的概念,所谓光流就是指图像表现运动的速度.物体在运动的时候之所以能被人眼发现,就是因为当物体运动时,会在人的视网膜上形成一系列的 ...
- Matlab查看数值不用科学计数法显示
如图: 运行结果显示的是科学计数法的数据 输入命令“format long g” --> Enter --> 输入需要转换的数据 即可显示.
- matlab规定小数点保留4位且非科学计数法格式存储txt
matlab 不保存为科学计数法 http://blog.sciencenet.cn/blog-472136-402727.html 经常在表示matlab值时,它总会把一些小于1的大于1000的数使 ...
- 层次分析法、模糊综合评测法实例分析(涵盖各个过程讲解、原创实例示范、MATLAB源码公布)
目录 一.先定个小目标 二.层次分析法部分 2.1 思路总括 2.2 构造两两比较矩阵 2.3 权重计算方法 2.3.1 算术平均法求权重 2.3.2 几何平均法求权重 2.3.3 特征值法求权重 2 ...
- <读书笔记>软件调试之道 :问题的核心-重现问题
声明:本文档的内容主要来源于书籍<软件调试修炼之道>作者Paul Butcher,属于读书笔记. 重现第一,提问第二 问题重现是实证过程的最强大武器,如果不能重现问题,你也无法证明修复了它 ...
- Testing - 测试基础 - 方法
选择和使用测试方法和工具 按照测试需求用途(或测试技巧)选择 在软件开发生命周期和软件测试流程中适当地选择 按照测试人员实际技能选择 选择可提供的和可执行的 测试方法 类别及技巧 目标 使用方法 举例 ...
- [liu yanling]软件测试技巧
1.添加.修改功能 (1)是否支持tab键 (2)是否支持enter键 (3)不符合要求的地方是否有错误提示 (4)保存后,是否也插入到数据库中 (5)字段唯一的,是否可以重复添加 (6)对编辑页列表 ...
随机推荐
- C++中vector使用详细说明 (转)
转自:http://blog.chinaunix.net/uid-26000296-id-3785610.html http://www.cnblogs.com/mr-wid/archive/2013 ...
- python框架之Django(11)-中间件
介绍 在django中,中间件其实就是一个类,在一个请求到来和这个请求结束之前,django会根据自己的规则在合适的时机执行中间件中相应的方法. 在django项目的settings模块中,有一个 M ...
- unity 安装破解提示partern not found和tutorials学习
1.破解安装问题:unity 安装破解提示partern not found 可能和安装了多个版本有关,删除了c下的unity目录也没有解决,试着重新安装也不能破解, 破解的软件的方式是生成lisen ...
- python基础之 while 逻辑运算符 格式化输出等
1.while循环 while 条件: 循环体 while 条件: 循环体 else: 循环体 重点: 当条件为真的时候,就进入循环体,从上到下依次执行,执行完最后一条语句时,while并不是直接退出 ...
- 关于Java8 Stream流的利与弊 Java初学者,大神勿喷
题目需求: 1:第一个队伍只要名字为3个字成员的姓名,存储到新集合 2:第一个队伍筛选之后只要前3人:存储到一个新集合 3:第2个队伍只要姓张的成员姓名:存储到一个新集合 4:第2个队伍不要前2人,存 ...
- 高并发架构系列:MQ消息队列的12点核心原理总结
消息队列已经逐渐成为分布式应用场景.内部通信.以及秒杀等高并发业务场景的核心手段,它具有低耦合.可靠投递.广播.流量控制.最终一致性 等一系列功能. 无论是 RabbitMQ.RocketMQ.Act ...
- 基于注解的Spring事务配置
spring采用@Transactional注解进行事务申明,@Transactional既可以在方法上申明,也可以在类上申明,方法申明优先于类申明. 1.pom配置 包括spring核心包引入以及s ...
- Oarcle之视图
视图 什么是视图? (在 SQL 中,视图是基于 SQL 语句的结果集的可视化的表. 视图包含行和列,就像一个真实的表.视图中的字段就是来自一个或多个数据库中的真实的表中的字段.我们可以向视图添加 S ...
- 多条件搜索优化sql
SELECT ctm.* FROM crawltaskmanage ctm,urlmanage um WHERE (ctm.status='0' AND um.`urlId`=ctm.`urlId`) ...
- hbot固件配置
又入了一台打印机,171到手,本来之前有更好的,无奈别人下手太快,只剩这台了. 175x135x180的样子. 创客的板,还带16g的闪迪内存卡,看到那会儿感觉赚大了! 拿到的时候不少螺丝松的,有的打 ...