题目链接

题目大意:给定一个棋盘,棋盘上有0或1,你可以将一整行取反或者一整列取反,要使得最后剩的1最少。\((1\le n\le 20,1\le m\le 100000)\)。

一个容易想到的思路就是先枚举行是否取反,然后列就看1的个数是否大于\(\frac{n}{2}\)考虑是否取反。

我们设函数\(f(x)\)表示\(min(x_0,x_1)\),\(x\)在二进制状态下0或1最少的个数。

我们设行的取反状态为\(k\),每列的最终状态就是\(sta[i]\ xor\ k\),对答案的贡献就是\(f(sta[i]\ xor\ k)\)。

所以我们构造\(g(x)\)表示初始状态为\(x\)的列的数量。答案函数\(A(x)\)表示行的取反状态为\(x\)的答案,则\(A=f*g\)。

代码:

#include<bits/stdc++.h>
#define ll long long using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n,m;
int s[25][100005];
ll f[1<<20],g[1<<20];
int Count(int s) {
int ans=0;
for(;s;s>>=1) ans+=s&1;
return ans;
} void FWT_xor(ll *a,int n,int flag) {
for(int len=2;len<=n;len<<=1) {
for(int mid=len>>1,i=0;i<n;i+=len) {
for(int j=0;j<mid;j++) {
ll u=a[i+j],v=a[i+j+mid];
a[i+j]=u+v,a[i+j+mid]=u-v;
if(flag==-1) a[i+j]/=2,a[i+j+mid]/=2;
}
}
}
} char t[100005];
int main() {
n=Get(),m=Get();
for(int i=1;i<=n;i++) {
scanf("%s",t+1);
for(int j=1;j<=m;j++)
s[i][j]=t[j]-'0';
}
for(int i=1;i<=m;i++) {
int now=0;
for(int j=1;j<=n;j++) now=(now<<1)|s[j][i];
g[now]++;
}
for(int s=0;s<(1<<n);s++) {
f[s]=Count(s);
f[s]=min(f[s],n-f[s]);
}
FWT_xor(f,1<<n,1),FWT_xor(g,1<<n,1);
for(int i=0;i<(1<<n);i++) f[i]*=g[i];
FWT_xor(f,1<<n,-1);
ll ans=1e9;
for(int i=0;i<(1<<n);i++) ans=min(ans,f[i]);
cout<<ans;
return 0;
}

CF 633 E. Binary Table的更多相关文章

  1. 【CF662C】Binary Table(FWT)

    [CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...

  2. [CF662C Binary Table][状压+FWT]

    CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) ...

  3. CROC 2016 - Final Round [Private, For Onsite Finalists Only] C. Binary Table FWT

    C. Binary Table 题目连接: http://codeforces.com/problemset/problem/662/C Description You are given a tab ...

  4. CF 633 F. The Chocolate Spree 树形dp

    题目链接 CF 633 F. The Chocolate Spree 题解 维护子数答案 子数直径 子数最远点 单子数最长直径 (最长的 最远点+一条链) 讨论转移 代码 #include<ve ...

  5. 【CF662C】Binary Table 按位处理

    [CF662C]Binary Table 题意:给你一个$n\times m$的01网格,你可以进行任意次操作,每次操作是将一行或一列的数都取反,问你最多可以得到多少个1? $n\le 20,m\le ...

  6. CF-1440C2 Binary Table (Hard Version) (构造,模拟)

    Binary Table (Hard Version) 题意 \(n*m(2\le n,m\le 100)\) 的01矩阵,每次可以选择一个宽度为2的子矩阵,将四个位置中的任意3个进行翻转,即0变1, ...

  7. CF662C Binary Table【FWT】

    CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...

  8. 「CF662C」 Binary Table

    「CF662C」 Binary Table 题目链接 题目所给的 \(n\) 很小,于是我们可以考虑这样一种朴素做法:暴力枚举第 \(i\) 行是否翻转,这样每一行的状态就确定了,这时取每一列 \(0 ...

  9. CF 662C Binary Table

    用FWT优化计算. 首先发现行数很小,想到一个暴力的方法,就是以一个二进制位$0$表示这一行不翻转而二进制位$1$表示这一行翻转,然后$2^n$枚举出所有行的翻转情况,再$O(m)$计算所有的结果. ...

随机推荐

  1. 实现text-detection-ctpn一路的坎坎坷坷

    小编在学习文字检测,因为作者提供的caffe实现没有训练代码(不过训练代码可以参考faster-rcnn的训练代码),所以我打算先使用tensorflow实现,主要是复现前辈的代码,主要是对文字检测模 ...

  2. Java设计模式学习记录-装饰模式

    前言 装饰模式也是一种结构型模式,主要是目的是相对于类与类之间的继承关系来说,使用装饰模式可以降低耦合度.JDK中有不少地方都使用到了装饰模式,例如Java的各种I/O流,javax.swing包中一 ...

  3. Java字符串和容器

    String Java.lang.String是Java的字符串类. Srting是一个不可变对象,所有对String修改的操作都需要构造新的String实例. String可以由char数组或字符串 ...

  4. Linux ELF 文件格式

    ELF 文件类型 ELF (Executable Linkable Format) 是 linux 下的可执行文件格式,与 windows 下的 PE (Portable Executable) 格式 ...

  5. C# 语句 分支语句 switch----case----.

    第二种分支语句  switch..case. switch(一个变量){ case 值:要执行的代码段;break; case 值:要执行的代码段;break; ... ... ... default ...

  6. JS通过百度地图API获取当前定位信息

    $(function(){ var latlon=null; //ajax获取用户所在经纬度 $.ajax({ url:"http://api.map.baidu.com/location/ ...

  7. ios --键盘监听JYKeyBoardListener

    没有前言,就是一个简单的键盘监听,自动调整输入框的位置不被键盘遮挡 .h // // JYKeyBoardListener.h // // Created by JianF.Sun on 17/9/2 ...

  8. centos 配置ssh远程登录

    参考博客: http://blog.csdn.net/sangjian1006/article/details/51603236 1.修改SSH配置文件/etc/ssh/sshd_config 2.在 ...

  9. JS实现抽奖(方形)

    展示: HTML: <div id="table"></div> <div id="btn"> <button onc ...

  10. K-Means算法的10个有趣用例

    https://www.jianshu.com/p/162c9ec713cf 摘要: 让我们走进K-Means算法的“前世今生”以及和它有关的十个有趣的应用案例. K-means算法具有悠久的历史,并 ...