I noticed that that 'r2_score' and 'explained_variance_score' are both build-in sklearn.metrics methods for regression problems.

I was always under the impression that r2_score is the percent variance explained by the model. How is it different from 'explained_variance_score'?

When would you choose one over the other?

Thanks!

OK, look at this example:

In [123]:
#data
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
print metrics.explained_variance_score(y_true, y_pred)
print metrics.r2_score(y_true, y_pred)
0.957173447537
0.948608137045
In [124]:
#what explained_variance_score really is
1-np.cov(np.array(y_true)-np.array(y_pred))/np.cov(y_true)
Out[124]:
0.95717344753747324
In [125]:
#what r^2 really is
1-((np.array(y_true)-np.array(y_pred))**2).sum()/(4*np.array(y_true).std()**2)
Out[125]:
0.94860813704496794
In [126]:
#Notice that the mean residue is not 0
(np.array(y_true)-np.array(y_pred)).mean()
Out[126]:
-0.25
In [127]:
#if the predicted values are different, such that the mean residue IS 0:
y_pred=[2.5, 0.0, 2, 7]
(np.array(y_true)-np.array(y_pred)).mean()
Out[127]:
0.0
In [128]:
#They become the same stuff
print metrics.explained_variance_score(y_true, y_pred)
print metrics.r2_score(y_true, y_pred)
0.982869379015
0.982869379015

So, when the mean residue is 0, they are the same. Which one to choose dependents on your needs, that is, is the mean residue suppose to be 0?

Most of the answers I found (including here) emphasize on the difference between R2 and Explained Variance Score, that is: The Mean Residue (i.e. The Mean of Error).

However, there is an important question left behind, that is: Why on earth I need to consider The Mean of Error?


Refresher:

R2: is the Coefficient of Determination which measures the amount of variation explained by the (least-squares) Linear Regression.

You can look at it from a different angle for the purpose of evaluating the predicted values of y like this:

Varianceactual_y × R2actual_y = Variancepredicted_y

So intuitively, the more R2 is closer to 1, the more actual_y and predicted_y will have samevariance (i.e. same spread)


As previously mentioned, the main difference is the Mean of Error; and if we look at the formulas, we find that's true:

R2 = 1 - [(Sum of Squared Residuals / n) / Variancey_actual]

Explained Variance Score = 1 - [Variance(Ypredicted - Yactual) / Variancey_actual]

in which:

Variance(Ypredicted - Yactual) = (Sum of Squared Residuals - Mean Error) / n 

So, obviously the only difference is that we are subtracting the Mean Error from the first formula! ... But Why?


When we compare the R2 Score with the Explained Variance Score, we are basically checking the Mean Error; so if R2 = Explained Variance Score, that means: The Mean Error = Zero!

The Mean Error reflects the tendency of our estimator, that is: the Biased v.s Unbiased Estimation.


In Summary:

If you want to have unbiased estimator so our model is not underestimating or overestimating, you may consider taking Mean of Error into account.

参考链接:https://stackoverflow.com/questions/24378176/python-sci-kit-learn-metrics-difference-between-r2-score-and-explained-varian

Python scikit-learn (metrics): difference between r2_score and explained_variance_score?的更多相关文章

  1. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  2. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  3. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  6. 笨办法学 Python (Learn Python The Hard Way)

    最近在看:笨办法学 Python (Learn Python The Hard Way) Contents: 译者前言 前言:笨办法更简单 习题 0: 准备工作 习题 1: 第一个程序 习题 2: 注 ...

  7. 学 Python (Learn Python The Hard Way)

    学 Python (Learn Python The Hard Way) Contents: 译者前言 前言:笨办法更简单 习题 0: 准备工作 习题 1: 第一个程序 习题 2: 注释和井号 习题 ...

  8. Python第三方库(模块)"scikit learn"以及其他库的安装

    scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/ ...

  9. Linear Regression with Scikit Learn

    Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...

随机推荐

  1. 从 Secure Element 到 Android KeyStore

    忽如一夜春风来,智能手机来到每个人的手上,我们用它支付.理财.娱乐.工作.记录生活.存储私密信息.乘坐公共交通.开启家门.控制汽车....智能手机是如此的重要,不知天天把它拿在手上的你,是否关心过它是 ...

  2. Docker国内仓库和镜像

    由于网络原因,我们在pull Image 的时候,从Docker Hub上下载会很慢...所以,国内的Docker爱好者们就添加了一些国内的镜像(mirror),方便大家使用. 一.国内Docker仓 ...

  3. Mysql 5.7 基于组复制(MySQL Group Replication) - 运维小结

    之前介绍了Mysq主从同步的异步复制(默认模式).半同步复制.基于GTID复制.基于组提交和并行复制 (解决同步延迟),下面简单说下Mysql基于组复制(MySQL Group Replication ...

  4. 获取多个checkbox的选中值

    我在这个div中添加了多个input. 拼接一下呢.最老的方法. jquery获取值: var strSel=""; $("[name='jbbm']:checked&q ...

  5. VueJs开发笔记—IDE选择和优化、框架特性、数据调用、路由选项及使用

    一.IDE的选择: VsCode和WebStorm都是不错的选择,说一下两者的优缺点,调试便捷性来说两者不相上下. WebStorm缺点:性能方面VsCode远好于WebStorm: WebStorm ...

  6. 利用cordova打包H5混合app

    1.首先布置jdk环境,下载jdk(http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.htm ...

  7. Linux 服务器命令,持续更新……

    记录一下常用命令给自己备忘备查,会持续更新-- 一.查看和修改Linux的时间 1. 查看时间和日期,命令: date 2.设定时间和日期 例如:将系统日期修改成2020年2月14日12点的命令: d ...

  8. [转]Ionic国际化解决方案

    本文转自:http://www.cnblogs.com/crazyprogrammer/p/7904436.html 1.     核心内容 使用Angular2的国际化(i18n)库:ngx-tra ...

  9. T-SQL:是NULL不是NULL(七)

    首先SQL SERVER 是一个三值逻辑 即谓词计算结果为TRUE,FALSE,UNKNOWN 标准的谓词都是遵循这种规则的 如 slary>0  会返回计算结果为TRUE 结果的行拒绝FALS ...

  10. 【Java】用注解实现分发器

    在C/S中,客户端会向服务器发出各种请求,而服务器就要根据请求做出对应的响应.实际上就是客户机上执行某一个方法,将方法返回值,通过字节流的方式传输给服务器,服务器找到该请求对应的响应方法,并执行,将结 ...