作者:Derek

简介

Github地址:https://github.com/Bytom/bytom

Gitee地址:https://gitee.com/BytomBlockchain/bytom

本章介绍Derek解读-Bytom源码分析-持久化存储LevelDB

作者使用MacOS操作系统,其他平台也大同小异

Golang Version: 1.8

LevelDB介绍

比原链默认使用leveldb数据库。Leveldb是一个google实现的非常高效的kv数据库。LevelDB是单进程的服务,性能非常之高,在一台4核Q6600的CPU机器上,每秒钟写数据超过40w,而随机读的性能每秒钟超过10w。

由于Leveldb是单进程服务,不能同时有多个进程进行对一个数据库进行读写。同一时间只能有一个进程,或一个进程多并发的方式进行读写。

比原链在数据存储层上存储所有链上地址、资产交易等信息。

LevelDB的增删改查操作

LevelDB是google开发的一个高性能K/V存储,本节我们介绍下LevelDB如何对LevelDB增删改查。

package main

import (
"fmt" dbm "github.com/tendermint/tmlibs/db"
) var (
Key = "TESTKEY"
LevelDBDir = "/tmp/data"
) func main() {
db := dbm.NewDB("test", "leveldb", LevelDBDir)
defer db.Close() db.Set([]byte(Key), []byte("This is a test.")) value := db.Get([]byte(Key))
if value == nil {
return
}
fmt.Printf("key:%v, value:%v\n", Key, string(value)) db.Delete([]byte(Key))
} // Output
// key:TESTKEY, value:This is a test.

以上Output是执行该程序得到的输出结果。

该程序对leveld进行了增删改查操作。dbm.NewDB得到db对象,在/tmp/data目录下会生成一个叫test.db的目录。该目录存放该数据库的所有数据。

db.Set 设置key的value值,key不存在则新建,key存在则修改。

db.Get 得到key中value数据。

db.Delete 删除key及value的数据。

比原链的数据库

默认情况下,数据存储目录在--home参数下的data目录。以Darwin平台为例,默认数据库存储在 $HOME/Library/Bytom/data。

  • accesstoken.db token信息(钱包访问控制权限)

    core.db 核心数据库,存储主链相关数据。包括块信息、交易信息、资产信息等

    discover.db 分布式网络中端到端的节点信息
  • trusthistory.db

    txdb.db 存储交易相关信息

    txfeeds.db 目前比原链代码版本未使用该功能,暂不介绍

    wallet.db 本地钱包数据库。存储用户、资产、交易、utox等信息

以上所有数据库都由database模块管理

比原数据库接口

在比原链中数据持久化存储由database模块管理,但是持久化相关接口在protocol/store.go中

type Store interface {
BlockExist(*bc.Hash) bool GetBlock(*bc.Hash) (*types.Block, error)
GetStoreStatus() *BlockStoreState
GetTransactionStatus(*bc.Hash) (*bc.TransactionStatus, error)
GetTransactionsUtxo(*state.UtxoViewpoint, []*bc.Tx) error
GetUtxo(*bc.Hash) (*storage.UtxoEntry, error) LoadBlockIndex() (*state.BlockIndex, error)
SaveBlock(*types.Block, *bc.TransactionStatus) error
SaveChainStatus(*state.BlockNode, *state.UtxoViewpoint) error
}
  • BlockExist 根据hash判断区块是否存在
  • GetBlock 根据hash获取该区块
  • GetStoreStatus 获取store的存储状态
  • GetTransactionStatus 根据hash获取该块中所有交易的状态
  • GetTransactionsUtxo 缓存与输入txs相关的所有utxo
  • GetUtxo(*bc.Hash) 根据hash获取该块内的所有utxo
  • LoadBlockIndex 加载块索引,从db中读取所有block header信息并缓存在内存中
  • SaveBlock 存储块和交易状态
  • SaveChainStatus 设置主链的状态,当节点第一次启动时,节点会根据key为blockStore的内容判断是否初始化主链。

比原链数据库key前缀

** database/leveldb/store.go **

var (
blockStoreKey = []byte("blockStore")
blockPrefix = []byte("B:")
blockHeaderPrefix = []byte("BH:")
txStatusPrefix = []byte("BTS:")
)
  • blockStoreKey 主链状态前缀
  • blockPrefix 块信息前缀
  • blockHeaderPrefix 块头信息前缀
  • txStatusPrefix 交易状态前缀

GetBlock查询块过程分析

** database/leveldb/store.go **

func (s *Store) GetBlock(hash *bc.Hash) (*types.Block, error) {
return s.cache.lookup(hash)
}

** database/leveldb/cache.go **

func (c *blockCache) lookup(hash *bc.Hash) (*types.Block, error) {
if b, ok := c.get(hash); ok {
return b, nil
} block, err := c.single.Do(hash.String(), func() (interface{}, error) {
b := c.fillFn(hash)
if b == nil {
return nil, fmt.Errorf("There are no block with given hash %s", hash.String())
} c.add(b)
return b, nil
})
if err != nil {
return nil, err
}
return block.(*types.Block), nil
}

GetBlock函数最终会执行lookup函数。lookup函数总共操作有两步:

  • 从缓存中查询hash值,如果查到则返回
  • 如果为从缓存中查询到则回调fillFn回调函数。fillFn回调函数会将从磁盘上获得到块信息存储到缓存中并返回该块的信息。

fillFn回调函数实际上调取的是database/leveldb/store.go下的GetBlock,它会从磁盘中获取block信息并返回。

Derek解读Bytom源码-持久化存储LevelDB的更多相关文章

  1. Derek解读Bytom源码-创世区块

    作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...

  2. Derek解读Bytom源码-孤块管理

    作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...

  3. Derek解读Bytom源码-Api Server接口服务

    作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...

  4. Derek解读Bytom源码-启动与停止

    作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...

  5. Derek解读Bytom源码-P2P网络 地址簿

    作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...

  6. Derek解读Bytom源码-protobuf生成比原核心代码

    作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...

  7. Derek解读Bytom源码-P2P网络 upnp端口映射

    作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...

  8. 鸿蒙OS的系统调用是如何实现的? | 解读鸿蒙源码

    本文将首先带您回顾"系统调用"的概念以及它的作用,然后从经典的Hello World开始,逐行代码层层分析--鸿蒙OS的系统调用是如何实现的. 写在前面 9月10号 华为开发者大会 ...

  9. RxJava系列6(从微观角度解读RxJava源码)

    RxJava系列1(简介) RxJava系列2(基本概念及使用介绍) RxJava系列3(转换操作符) RxJava系列4(过滤操作符) RxJava系列5(组合操作符) RxJava系列6(从微观角 ...

随机推荐

  1. 深度解析 Vue 响应式原理

    深度解析 Vue 响应式原理 该文章内容节选自团队的开源项目 InterviewMap.项目目前内容包含了 JS.网络.浏览器相关.性能优化.安全.框架.Git.数据结构.算法等内容,无论是基础还是进 ...

  2. 文本转音频(百度语音合成api)(python)(原创)

    应之前的一家小学教育培训机构的要求设计的一款 将文字转音频的程序.(注:后面应该是生成音频才对,没有改过来) 技术难点: ①语音合成,如果没有现在这么多的云服务-百度云语音合成,我估计这个程序会费很大 ...

  3. appium键盘事件

    driver.pressKeyEvent(66); 附录 keycode 电话键 KEYCODE_CALL 拨号键 5KEYCODE_ENDCALL 挂机键 6KEYCODE_HOME 按键Home ...

  4. MathWorks官方消息:神经网络工具箱不能编译

    各位会员大家好,大家关心的问题,我已经大部分得到答案. 10月25号-27号我访问了MathWorks公司在波士顿的总部,大家经常关心的问题,我大部分都得到了答案. 关于神经网络工具箱,我与Matla ...

  5. mysql 开发进阶篇系列 31 工具篇(mysql连接工具与MyISAM表压缩工具)

    一.mysql 连接工具 在mysq提供的工具中,DBA使用最频繁的莫过于mysql.这里的mysql是指连接数据库的客户端工具. 1.1 连接选项 -u, -- user=name 指定用户名 -p ...

  6. 【适合公司业务】全网最详细的IDEA里如何正确新建【普通或者Maven】的Java web项目并发布到Tomcat上运行成功【博主强烈推荐】(类似eclipse里同一个workspace下【多个子项目】并存)(图文详解)

    不多说,直接上干货! 首先,大家要明确,IDEA.Eclipse和MyEclipse等编辑器之间的新建和运行手法是不一样的. 如果是在Myeclipse里,则是File -> new -> ...

  7. spring framework核心框架体系结构(转载)

    作者:Dreawer 很多人都在用spring开发java项目,但是配置maven依赖的时候并不能明确要配置哪些spring的jar,经常是胡乱添加一堆,编译或运行报错就继续配置jar依赖,导致spr ...

  8. Java并发编程笔记之读写锁 ReentrantReadWriteLock 源码分析

    我们知道在解决线程安全问题上使用 ReentrantLock 就可以,但是 ReentrantLock 是独占锁,同时只有一个线程可以获取该锁,而实际情况下会有写少读多的场景,显然 Reentrant ...

  9. [TJOI 2018]智力竞赛

    Description 题库链接 给出一张 \(m\) 个点的有向图.问可重最小路径覆盖是否 \(\leq n+1\) .若不,求最多用 \(n+1\) 条路径去覆盖,最大化未覆盖点点权最小值. \( ...

  10. OSPF笔记

    OSPF:现实情况中99%的网络运行的是这种路由协议 OSPF有三张表:邻居表,链路状态数据库(LSDB),路由表 SPF算法 OSPF架构为花瓣形(不同area组成花瓣)就是为了防环,因为骨干区域运 ...