#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/nonfree/nonfree.hpp>
#include<opencv2/legacy/legacy.hpp>
#include <iostream>
using namespace cv;
using namespace std; int main( )
{
//【0】改变console字体颜色
system("color 4F"); //【1】载入源图片
Mat img_1 = imread("1.jpg", );
Mat img_2 = imread( "2.jpg", );//【2】利用SURF检测器检测的关键点
int minHessian = ;
SURF detector( minHessian );
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 ); //【3】计算描述符(特征向量)
SURF extractor;
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 ); //【4】采用FLANN算法匹配描述符向量
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
double max_dist = ; double min_dist = ; //【5】快速计算关键点之间的最大和最小距离
for( int i = ; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
//输出距离信息
printf("> 最大距离(Max dist) : %f \n", max_dist );
printf("> 最小距离(Min dist) : %f \n", min_dist ); //【6】存下符合条件的匹配结果(即其距离小于2* min_dist的),使用radiusMatch同样可行
std::vector< DMatch > good_matches;
for( int i = ; i < descriptors_1.rows; i++ )
{
if( matches[i].distance < *min_dist )
{ good_matches.push_back( matches[i]); }
} //【7】绘制出符合条件的匹配点
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-), Scalar::all(-),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //【8】输出相关匹配点信息
for( int i = ; i < good_matches.size(); i++ )
{ printf( ">符合条件的匹配点 [%d] 特征点1: %d -- 特征点2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); } //【9】显示效果图
imshow( "匹配效果图", img_matches ); //按任意键退出程序
waitKey();
return ;
}

FlannBasedMatcher 立体匹配的更多相关文章

  1. 基于MST的立体匹配及相关改进(A Non-Local Cost Aggregation Method for Stereo Matching)

    怀着很纠结的心情来总结这篇论文,这主要是因为作者提虽然供了源代码,但是我并没有仔细去深究他的code,只是把他的算法加进了自己的项目.希望以后有时间能把MST这一结构自己编程实现!! 论文题目是基于非 ...

  2. Stereo Matching 立体匹配学习资料

    Middlebury Stereo Evaluation Camera Calibration and 3D Reconstruction OpenCV学习笔记(18)双目测距与三维重建的OpenCV ...

  3. 立体匹配:关于理解middlebury提供的立体匹配代码后的精减

    Middlebury立体匹配源码总结 优化方法 图像可否预处理 代价计算可否采用BT方式 可选代价计算方法 可否代价聚合 可否MinFilter优化原始代价 WTA-Box 可以 可以 AD/SD 可 ...

  4. 立体视觉-opencv中立体匹配相关代码

    三种匹配算法比较 BM算法: 该算法代码: view plaincopy to clipboardprint? CvStereoBMState *BMState = cvCreateStereoBMS ...

  5. 真实场景的双目立体匹配(stereo matching)以及虚拟视点合成(virtual view synthsis)示例

    双目立体匹配一直是双目视觉的研究热点,双目相机拍摄同一场景的左.右两幅视点图像,运用立体匹配匹配算法获取视差图,进而获取深度图.而深度图的应用范围非常广泛,由于其能够记录场景中物体距离摄像机的距离,可 ...

  6. 双目立体匹配——归一化互相关(NCC)

    归一化相关性,normalization cross-correlation,因此简称NCC,下文中笔者将用NCC来代替这冗长的名称. NCC,顾名思义,就是用于归一化待匹配目标之间的相关程度,注意这 ...

  7. OpenCV中feature2D——BFMatcher和FlannBasedMatcher

    作者:holybin 原文:https://blog.csdn.net/holybin/article/details/40926315 Brute Force匹配和FLANN匹配是opencv二维特 ...

  8. zedboard开发板上移植opencv代码(立体匹配)

    前言 公司要做立体匹配相关的项目,已有matlab和c++版本,可是不能做到实时显示立体信息,想要硬件实现实时,无奈本渣也是个硬件的新手,先按照实验室lyq同学的思路在zedboard开发板的纯ARM ...

  9. 学习笔记:使用opencv做双目测距(相机标定+立体匹配+测距).

    最近在做双目测距,觉得有必要记录点东西,所以我的第一篇博客就这么诞生啦~ 双目测距属于立体视觉这一块,我觉得应该有很多人踩过这个坑了,但网上的资料依旧是云里雾里的,要么是理论讲一大堆,最后发现还不知道 ...

随机推荐

  1. iOS开发 SVN回退到某一个版本

    1.选择你要恢复的工程,(注意:从SVN上checkout下来的工程不要改变,移动位置) 2.找到SVN的导航栏,点击“Working Copy”--->"Revert" 3 ...

  2. 定义action的允许访问方式

    publicfunction behaviors() { return[ 'verbs'=>[ 'class'=>VerbFilter::className(), 'actions'=&g ...

  3. Scrapy、Scrapy-redis组件

    目录 Scrapy 一.安装 二.基本使用 1. 基本命令 2.项目结构以及爬虫应用简介 3. 小试牛刀 4. 选择器 5. 格式化处理 6.中间件 7. 自定制命令 8. 自定义扩展 9. 避免重复 ...

  4. 通过位运算求两个数的和(求解leetcode:371. Sum of Two Integers)

    昨天在leetcode做题的时候做到了371,原题是这样的: 371. Sum of Two Integers Calculate the sum of two integers a and b, b ...

  5. cs特征性以及数据库的连接

    笔记c3 五大浏览器内核: Ie浏览器:-ms 火狐:-moz Safari以及chorme:-webkit 欧朋:-o Word-wrap:break-word;设置换行. Border borde ...

  6. UEFI+GPT双硬盘安装Win10+Ubuntu16.04双系统

    转载请注明出处:http://www.cnblogs.com/willnote/p/6725594.html 安装环境 SSD+HDD双盘,Win10安装在SSD里,HDD分出来60G安装Ubuntu ...

  7. nodeppt:网页版 PPT

    资料 网址 github https://github.com/ksky521/nodeppt 网页版PPT(nodeppt 的介绍) http://deliazhi.com/2017/03/31/W ...

  8. 第3章 Vim使用笔记

    3.1 vi使用map自定义快捷方式 [想要永久保存定义的快捷键在-/.vimrc[进入root后才能看到~/.vimrc文件]中编辑保存即可!] set nu 输入下列命令[:map <spe ...

  9. php中正则表达式详解

    概述 正则表达式是一种描述字符串结果的语法规则,是一个特定的格式化模式,可以匹配.替换.截取匹配的字符串.常用的语言基本上都有正则表达式,如JavaScript.java等.其实,只有了解一种语言的正 ...

  10. 黄聪:什么是XSS攻击

    XSS是一种经常出现在web应用中的计算机安全漏洞,它允许恶意web用户将代码植入到提供给其它用户使用的页面中.比如这些代码包括HTML代码和客户端脚本.攻击者利用XSS漏洞旁路掉访问控制——例如同源 ...