【bzoj4818】 Sdoi2017—序列计数
http://www.lydsy.com/JudgeOnline/problem.php?id=4818 (题目链接)
题意
一个长度为$n$的序列,每个元素是不超过$m$的正整数,且这$n$个数的和是$p$的倍数,这$n$个数中至少有一个是质数,问这样的序列有多少个。
Solution
md吓死我了,还以为想错了,$p^2\log n$的半天不敢写=。=
$f[i][j]$表示忽略质数条件下的长度为$i$,和$mod~p=j$的序列数;$g[i][j]$表示满足没有一个数是质数的情况下长度为$i$,和$mod~p=j$的序列数。
然后这个东西倍增优化一下,每次$p^2$爆乘就好了。
细节
循环卷积。mdzz卡空间,明明原题空间是256M。。
代码
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf (1ll<<30)
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=10000010,maxm=1010,MOD=20170408;
int p[maxn];
bool vis[maxn<<1];
LL F[maxm],G[maxm],f[maxm],g[maxm],c[maxm];
int n,m,P; void NTT(LL *a,LL *b,LL *r) {
int N=P<<1;
for (int i=0;i<N;i++) c[i]=0;
for (int i=0;i<P;i++)
for (int j=0;j<P;j++) (c[i+j]+=a[i]*b[j]%MOD)%=MOD;
for (int i=0;i<P;i++) r[i]=(c[i]+c[i+P])%MOD;
}
int main() {
scanf("%d%d%d",&n,&m,&P);
vis[1]=1;
for (int i=2;i<=m;i++) {
if (!vis[i]) p[++p[0]]=i;
for (int j=1;j<=p[0] && i*p[j]<=m;j++) {
vis[i*p[j]]=1;
if (i%p[j]==0) break;
}
}
for (int i=1;i<=m;i++) {
(++f[i%P])%=MOD;
if (vis[i]) (++g[i%P])%=MOD;
}
F[0]=G[0]=1;
for (;n;n>>=1) {
if (n&1) NTT(F,f,F),NTT(G,g,G);
NTT(f,f,f),NTT(g,g,g);
}
printf("%lld",(F[0]-G[0]+MOD)%MOD);
return 0;
}
【bzoj4818】 Sdoi2017—序列计数的更多相关文章
- [BZOJ4818][SDOI2017]序列计数(动规+快速幂)
4818: [Sdoi2017]序列计数 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 972 Solved: 581[Submit][Status ...
- [bzoj4818][Sdoi2017]序列计数_矩阵乘法_欧拉筛
[Sdoi2017]序列计数 题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=4818. 题解: 首先列出来一个递推式子 $f[i][0]$ ...
- bzoj4818 [Sdoi2017]序列计数
Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望,这n个数中,至少有一个数是质数.Alice想知道,有多少个序 ...
- 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)
传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...
- BZOJ4818 [SDOI2017]序列计数 【生成函数 + 快速幂】
题目 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数中,至少有一个数是质数.Alice想知道,有多少个序列满足她的要求. ...
- BZOJ4818 [SDOI2017] 序列计数 【矩阵快速幂】
题目分析: 一个很显然的同类项合并.注意到p的大小最大为100,考虑把模p意义下相同的求出来最后所有的减去没有质数的做矩阵快速幂即可. 代码: #include<bits/stdc++.h> ...
- 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法
[BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...
- BZOJ4818 LOJ2002 SDOI2017 序列计数 【矩阵快速幂优化DP】*
BZOJ4818 LOJ2002 SDOI2017 序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希 ...
- [Sdoi2017]序列计数 [矩阵快速幂]
[Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...
- BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法
BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...
随机推荐
- 最全的前端Git基础命令,看完保证你会!
常见信息 master: 默认开发分支 origin:默认远程版本库 Head: 默认开发分支 Head^:Head 的父提交 创建新仓库 git init git init [project-nam ...
- 分布式系统session一致性的问题
session的概念 什么是session? 服务器为每个用户创建一个会话,存储用户的相关信息,以便多次请求能够定位到同一个上下文.这样,当用户在应用程序的 Web 页之间跳转时,存储在 Sessio ...
- Linux mount 命令
mount 命令用来挂载文件系统.其基本命令格式为:mount -t type [-o options] device dirdevice:指定要挂载的设备,比如磁盘.光驱等.dir:指定把文件系统挂 ...
- DNS之BIND使用小结(Forward转发)
之前详细介绍了DNS及其在linux下的部署过程,今天再说下DNS的BIND高级特性-forwarder转发功能.比如下面一个案例:1)已经在测试环境下部署了两台内网DNS环境,DNS的zone域名为 ...
- 结对编程 学习手记ver1.2
团队成员: 226 高雅智 164刘浩然: 一 结对编程 辛辛苦苦搞了好久的时间,就是没有人家的快,明明算法都差不多,哎~~~ 结对的优势,在于双方互相督促,对于代码能贡献自己的能力,人多力量 ...
- selective search
1.引言:图像的物体识别主要有两个步骤:定位.分类.在分类的过程中,需要对图像中文物体的区域划分出来.传统的方法是利用滑窗,一个窗口一个窗口得选择,将之与目标进行比较,确定物体的位置. 为了降低搜索空 ...
- Python学习笔记 -- 第五章
模块 使用模块可以提高了代码的可维护性.其次,编写代码不必从零开始.当一个模块编写完毕,就可以被其他地方引用.我们在编写程序的时候,也经常引用其他模块,包括Python内置的模块和来自第三方的模块: ...
- [BUAA_SE_2017]个人项目-Sudoku
个人项目作业-数独 Github项目地址 时间预估 PSP2.1 Personal Software Process Stages 预估时间(分钟) 实际耗时(分钟) Planning 计划 60 · ...
- ajax 异步请求 代码
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...
- Web接口测试-HttpClient
要实现Web接口测试的自动化有许多方式,比如利用Jmeter.Loadrunner等测试工具都能够实现接口的自动化测试,我们也可以利用一些开源的框架来实现接口的自动化测试,比如我们现在要说的这个Htt ...