2142: 礼物

Description

一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。

Input

输入的第一行包含一个正整数P,表示模;
第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;
以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。

Output

若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。

数据规模和约定

设 $ P = \prod_{i=1}^n p_i^{c_i} $ 且 $ p_i $ 为质数

$1 \leqslant n \leqslant 10^9,1 \leqslant m \leqslant 5,1 \leqslant p_i^{c_i} \leqslant 10^5 $。

拓展卢卡斯和中国剩余定理的裸题

题目可以转换为求

\[\prod_{i=1}^n C_{n- \sum_{j=0}^{i-1} w[j]}^{w[i]}
\]

剩下的就是求 $ C_n^m % p $ 的问题了。

因为n,m,p都很大,所以我们可以使用拓展卢卡斯求出对于每个 $ p_i^{c_i} $ 余数,然后通过中国剩余定理合并即可。

#include<bits/stdc++.h>
using namespace std;
#define REP(i,st,ed) for(register int i=st,i##end=ed;i<=i##end;++i)
#define DREP(i,st,ed) for(register int i=st,i##end=ed;i>=i##end;--i)
#define pii pair<ll,ll>
typedef long long ll;
inline int read(){
int x;
char c;
int f=1;
while((c=getchar())!='-' && (c<'0' || c>'9'));
if(c=='-') c=getchar(),f=-1;
x=c^'0';
while((c=getchar())>='0' && c<='9') x=(x<<1)+(x<<3)+(c^'0');
return x*f;
}
inline ll readll(){
ll x;
char c;
ll f=1;
while((c=getchar())!='-' && (c<'0' || c>'9'));
if(c=='-') c=getchar(),f=-1;
x=c^'0';
while((c=getchar())>='0' && c<='9') x=(x<<1ll)+(x<<3ll)+(c^'0');
return x*f;
}
vector<pii> vc;
ll ksm(ll x,ll y,ll mod){
ll res=1;
while(y){
if(y&1ll) res=res*x%mod;
x=x*x%mod;
y>>=1ll;
}
return res;
}
ll exgcd(ll &x,ll &y,ll a,ll b){
if(!b){
x=1,y=0;
return a;
}
ll res=exgcd(y,x,b,a%b);
y-=a/b*x;
return res;
}
ll inv(ll a,ll b){
a%=b;
ll x,y;
exgcd(x,y,a,b);
x=(x%b+b)%b;
if(!x) x+=b;
return x;
}
ll fac(ll x,ll u,ll mod){
if(!x || x==1) return 1;
ll ans=1,num=1;
if(x/mod){
for(ll i=2;i<mod;++i)
if(i%u) num=num*i%mod;
ans=ans*ksm(num,x/mod,mod);
}
ans=ans*fac(x/u,u,mod)%mod;
x%=mod;
for(ll i=2;i<=x;++i)
if(i%u) ans=ans*i%mod;
return ans;
}
ll calc(ll x,ll u){
ll res=0;
for(;x;x/=u) res+=x/u;
return res;
}
ll C(ll n,ll m,ll u,ll v){
ll x=fac(n,u,v),y=fac(m,u,v),z=fac(n-m,u,v);
// cout<<n<<' '<<m<<' '<<v<<' '<<x<<' '<<y<<' '<<z<<endl;
ll num=calc(n,u)-calc(m,u)-calc(n-m,u);
x=x*inv(y,v)%v*inv(z,v)%v;
return x*ksm(u,num,v)%v;
}
ll exLucas(ll n,ll m,ll mod){
if(m>n) return 0;
ll ans=0;
REP(i,0,vc.size()-1){
pii u=vc[i];
ll x=u.first,y=u.second;
ans=(ans+inv(mod/y,y)*(mod/y)%mod*C(n,m,x,y)%mod)%mod;
}
return ans;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("china.in","r",stdin);
freopen("china.out","w",stdout);
#endif
ll mod=readll(),n=readll(),ans=1;
int m=read(),u=mod;
for(ll i=2;i*i<=u;++i){
if(u%i) continue;
ll x=1;
while(u%i==0) u/=i,x*=i;
vc.push_back(make_pair(i,x));
// cout<<i<<' '<<x<<endl;
}
if(u!=1) vc.push_back(make_pair(u,u));
// cout<<u<<endl;
REP(i,1,m){
ll x=readll();
ans=ans*exLucas(n,x,mod)%mod;
if(!ans){
printf("Impossible\n");
return 0;
}
n-=x;
}
printf("%lld\n",ans);
return 0;
}

bzoj2142: 礼物的更多相关文章

  1. BZOJ2142 礼物 扩展lucas 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8110015.html 题目传送门 - BZOJ2142 题意概括 小E购买了n件礼物,送给m个人,送给第i个人礼 ...

  2. [BZOJ2142]礼物(扩展Lucas)

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2286  Solved: 1009[Submit][Status][Discuss] ...

  3. BZOJ2142礼物——扩展卢卡斯

    题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼 ...

  4. BZOJ2142 礼物 【扩展Lucas】

    题目 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物, ...

  5. [bzoj2142]礼物(扩展lucas定理+中国剩余定理)

    题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...

  6. BZOJ2142: 礼物(拓展lucas)

    Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店 ...

  7. bzoj2142 礼物——扩展卢卡斯定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...

  8. 【BZOJ2142】礼物(拓展卢卡斯定理)

    [BZOJ2142]礼物(拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 显然如果\(\sum w_i>n\)无解. 否则答案就是:\(\displaystyle \prod_{i=1}^m{n- ...

  9. 【BZOJ2142】礼物 组合数+CRT

    [BZOJ2142]礼物 Description 小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在 ...

随机推荐

  1. React基础篇 - 02.JSX 简介

    JSX 简介 请观察下面的变量声明: const element = <h1>Hello, world!</h1>; 这种看起来可能有些奇怪的标签语法既不是字符串也不是HTML ...

  2. Luogu2467 SDOI2010 地精部落 DP

    传送门 一个与相对大小关系相关的$DP$ 设$f_{i,j,0/1}$表示放了$i$个,其中最后一个数字在$i$个中是第$j$大,且最后一个是极大值($1$)或极小值时($0$)的方案数.转移: $$ ...

  3. 面试3——java集合类面试题总结

    1.总结一下啊hashmap和hashtable的知识点? 1)关于hashmap的说法 HashMap实际上是一个“链表散列”的数据结构,在jdk1.8中添加了红黑树.HashMap底层结构是一个数 ...

  4. WPF没落了吗?

    从08年开始一直到现在,碰到所有的项目,我个人经手的,都用wpf开发. wpf应该说一直没有火过,一直平平淡淡. 个人为什么一直执着用wpf,开始使用是因公司项目,做了两年wpf开发,后来换工作一直搜 ...

  5. host大法之GitHub上不去

    dns解析慢,github上不去,慢 修改host. windows下路径为:C:\Windows\System32\drivers\etc\hosts Linux下路径:/etc/hosts 加入: ...

  6. Oracle日常运维操作总结-数据库的启动和关闭

    下面是工作中对Oracle日常管理操作的一些总结,都是一些基本的oracle操作和SQL语句写法,在此梳理成手册,希望能帮助到初学者(如有梳理不准确之处,希望指出). 一.数据库的启动和关闭 1.1 ...

  7. 回顾:前端模块化和AMD、CMD规范(全)

    先列举下一些著名言论: "我想定义一个 each 方法遍历对象,但页头的 util.js 里已经定义了一个,我的只能叫 eachObject 了,好无奈." "Requi ...

  8. M1m2分析报告

    个人博客链接: http://www.cnblogs.com/kjzxzzh/p/4074386.html http://www.cnblogs.com/kjzxzzh/p/4027699.html ...

  9. 《Linux内核设计与实现》第17章学习笔记

    第17章.设备与模块 17.1设备类型 1.块设备(blkdev): 寻址以块为单位,通常支持重定位操作.通过称为“块设备节点”的特殊文件来访问. 2.字符设备(cdev): 不可寻址,仅提供数据的流 ...

  10. Linux内核分析 读书笔记 (第七章)

    第七章 链接 1.链接是将各种代码和数据部分收集起来并组合成为一个单一文件的过程,这个文件可被加载(或被拷贝)到存储器并执行. 2.链接可以执行于编译时,也就是在源代码被翻译成机器代码时:也可以执行于 ...