洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)
用两种不一样的思路立体地理解斜率优化,你值得拥有。
题意分析
既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是直接并购,这一块对答案没有任何贡献。
我们先把这些给去掉,具体做法可以是,按高为第一关键字,宽为第二关键字从大到小排序,然后上双指针扫一遍。
于是,剩下的就是一个高度递减、宽度递增的矩形序列。考虑怎样制定它们的并购方案会最优。显然如果要并购,一定要挑序列中的一段区间,这样贡献答案的就只有最左边矩形的高乘上最右边矩形的宽,中间的又是没有贡献了。
设\(f_i\)为前\(i\)个矩形的最小花费,\(w\)为宽,\(h\)为高,直接写出一个\(O(n^2)\)的方程
\]
一看貌似是一个决策单调性优化的式子。然而。。。。。。
初中生都会的函数图像法
这种理解方法是在决策单调性优化DP的基础上应运而生的。
或者说,(在大多数情况下)斜率优化可以看作决策单调性优化的一种特殊情形。蒟蒻建议还是先入手决策单调性再来斜率优化吧。
蒟蒻的DP各种优化总结
蒟蒻之前写的一道经典(裸)决策单调性题的题解戳这里(Lightning Conductor)
对于每一个\(f_{j-1}+w_ih_j\),我们都可以把它视为一个直线\(l_j:y=ax+b\),其中\(a=h_j,b=f_{j-1}\)。对于每一个\(i\),我们就是需要求出所有\(j\le i\)的直线的\(x\)取\(w_i\)时最小的一个\(y\)值。仍然用KmPlot画一个我们需要维护的所有直线的样子,它们应该满足斜率依次递减。
\(l_1:y=2x;\)
\(l_2:y=x+1;\)
\(l_3:y=\frac x 2+3;\)
\(l_4:y=\frac x 6+5.\)
真正有用的部分
这样的话,我们就用单调队列维护若干个斜率递减的函数。我们仍然需要按照决策单调性的做法,维护相邻两个决策直线间的临界值(交点)\(k\)。难道还要维护决策二分栈,对每个临界值都二分么?
这些决策不是直线吗?求两个直线的交点。。。。。。初中数学就教了,是\(O(1)\)的。也就是对两个相邻决策直线\(l_1,l_2\),我们求\(\frac{b_2-b_1}{a_1-a_2}\)。其它过程跟决策单调性是一模一样的。直线入队前,如果队尾不满足斜率递增则出队。求\(f_i\)之前,先把队首临界值\(\le w_i\)的决策出队,那么现在队首就是最优决策了。
这样求出\(f_n\)只需要\(O(n)\)的时间。
高中生都会的线性规划法
这才是理解斜率优化的正宗方法,因为上面并没有充分体现对斜率的处理过程。
上面对两个相邻直线求\(\frac{b_2-b_1}{a_1-a_2}\),看起来有点像求什么东西。
我们原来把决策当成直线,斜率为\(a\),截距为\(b\)。现在我们换一下。把决策\(f_{j-1}+w_ih_j\)看作一个点\(p_j(x,y)\),其中\(x=-h_j,y=f_{j-1}\)。
现在要求解的问题又变成了什么样子呢?在平面上有若干个点,把\(f_i\)看成目标函数\(z\),我们需要找到\(f_i=w_ih_j+f_{j-1}\)即\(z=-w_ix+y\)的最小值。这不是个线性规划么?
把式子变成\(y=w_ix+f_i\),现在就让我们来最小化截距\(f_i\)。手(nao)动(dong)模拟一下,我们现在正在拿着一个斜率为\(w_i\)的直线,从下往上移动,当第一次经过某个决策点的时候,直线的在\(y\)轴上的截距就是我们要求的目标函数\(f_i\)的最小值了。
随便画一堆点就可以发现,无论直线以怎样的斜率向上靠,总有一些点永远都不会第一次与直线相交,也就是说这些决策是没用的。剩下的有用的决策点会构成一个凸包:(因为要画点所以换成了GeoGebra)
凸包的性质就是斜率递增/递减。在此题中,因为\(w\)递增,所以我们的单调队列中存的是若干个点满足\(x\)递增(\(h\)递减),\(y\)递增,而且相邻两个点的斜率也递增。这和原序列的顺序是同向的。假设队尾下标为\(t\),当需要在队尾加入一个新的决策点时,我们可能会遇到这样的情况:
这时候\(p_t\)已经不优了,我们把它出队,如此直到满足斜率递增为止,\(p_i\)就可以入队了。和上面那种理解方法的写法差不多,求相邻两个点形成的直线斜率然后比一下大小。队首的处理跟上面那种理解方法的写法也差不多,如果队首与后一个的斜率小于\(w_i\)就出队。最后的队首依然是最优解。
实现
两种实现的代码长得都差不多,都要搞一个单调队列,都要求临界值/斜率。所以就放一个代码吧。。。
复杂度\(O(n\log n)\),瓶颈竟然在sort上?!蒟蒻可不想来什么wys排序
#include<cstdio>
#include<algorithm>
#define RG register
#define R RG int
#define G c=getchar()
#define Calc(i,j) (f[j-1]-f[i-1])/(a[i].h-a[j].h)
//method1:求出临界值
//method2:求出斜率
using namespace std;
const int N=1e5+9;
int q[N];
double f[N],k[N];
//method1:k_i为决策直线q_i与q_i+1的临界值(交点)
//method2:k_i为决策点q_i与q_i+1所连成直线的斜率
struct Land{
int w,h;//结构体排序
inline bool operator<(RG Land&x)const{
return h>x.h||(h==x.h&&w>x.w);
}
}a[N];
inline int in(){
RG char G;
while(c<'-')G;
R x=c&15;G;
while(c>'-')x=x*10+(c&15),G;
return x;
}
int main(){
R n=in(),i,h,t;
for(i=1;i<=n;++i)
a[i].w=in(),a[i].h=in();
sort(a+1,a+n+1);
for(h=i=1;i<=n;++i)//双指针扫描去除无用矩形
if(a[h].w<a[i].w)a[++h]=a[i];
n=h;
for(h=i=1,t=0;i<=n;++i){
while(h<t&&k[t-1]>=Calc(q[t],i))--t;//维护临界值/斜率单调
k[t]=Calc(q[t],i);q[++t]=i;//加入决策直线/决策点
while(h<t&&k[h]<=a[i].w)++h;//弹出已经不优的决策
f[i]=(double)a[q[h]].h*a[i].w+f[q[h]-1];//求出最优解
}
printf("%.0lf\n",f[n]);
return 0;
}
洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)的更多相关文章
- 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(斜率优化)
题意 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽.比如约翰并购一块3 ...
- 洛谷2900 [USACO08MAR]土地征用Land Acquisition (斜率优化+dp)
自闭的一批....为什么斜率优化能这么自闭. 首先看到这个题的第一想法一定是按照一个维度进行排序. 那我们不妨直接按照\(h_i\)排序. 我们令\(dp[i]\)表示到了第\(i\)个矩形的答案是多 ...
- 洛谷 P2900 [USACO08MAR]土地征用Land Acquisition 解题报告
P2900 [USACO08MAR]土地征用Land Acquisition 题目描述 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选 ...
- 【洛谷 P2900】 [USACO08MAR]土地征用Land Acquisition(斜率优化,单调栈)
题目链接 双倍经验 设\(H\)表示长,\(W\)表示宽. 若\(H_i<H_j\)且\(W_i<W_j\),显然\(i\)对答案没有贡献. 于是把所有点按\(H\)排序,然后依次加入一个 ...
- luogu P2900 [USACO08MAR]土地征用Land Acquisition
写这道题时,预处理部分少打了等号,吓得我以为斜率优化错了或者被卡精了 mmp 首先有一个很明显的结论(逃),就是一个土地如果长(\(x\))与宽(\(y\))都比另一个土地小,那么这个土地一定可以跟那 ...
- P2900 [USACO08MAR]土地征用Land Acquisition
\(\color{#0066ff}{ 题目描述 }\) 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些 ...
- [LuoguP2900] [USACO08MAR]土地征用(Land Acquisition)
土地征用 (Link) 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽.比 ...
- 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)
洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...
- 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...
随机推荐
- mysql的聚簇索引与非聚簇索引的简短总结
[原文]https://www.jianshu.com/p/72763d47aa1a 在mysql数据库中,myisam引擎和innodb引擎使用的索引类型不同,myisam对应的是非聚簇索引,而in ...
- LiveCharts文档-3开始-3类型和设置
原文:LiveCharts文档-3开始-3类型和设置 LiveCharts文档-3开始-3类型和设置 类型和设置 这一部分非常的重要,涉及到LiveCharts的基本构成单元的介绍 LiveChart ...
- Luogu P2602 [ZJOI2010]数字计数
这算是一道数位DP的入门题了吧虽然对于我来说还是有点烦 经典起手式不讲了吧,\(ans(a,b)\to ans(1,b)-ans(1,a-1)\) 我们首先预处理一个东西,用\(f_i\)表示有\(i ...
- 【强化学习】python 实现 q-learning 迷宫通用模板
本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10145797.html 0.说明 这里提供了二维迷宫问题的一个比较通用的模板,拿到后需要修改 ...
- 并行管理工具——pdsh
1. pdsh安装2. pdsh常规使用2.1 pdsh2.2 pdcp 并行管理的方式有很多种: 命令行 一般是for循环 脚本 一般是expect+ssh等自编辑脚本 工具 pssh,pdsh,m ...
- 网站每日PV/IP统计/总带宽/URL统计脚本分享(依据网站访问日志)
在平时的运维工作中,我们运维人员需要清楚自己网站每天的总访问量.总带宽.ip统计和url统计等.虽然网站已经在服务商那里做了CDN加速,所以网站流量压力都在前方CDN层了像每日PV,带宽,ip统计等数 ...
- websocket(三)——基于node sockit.io的即时通讯
通过前面的学习发现,常见的websocket虽然可以很好地实现服务端和客户端的信息传递,但二者之间传递的数据只是简单的字符串,这对事物的描述,信息的传递是非常不友好的,下面将引入socket.io,来 ...
- Visual Studio2013的安装过程及练习测试
一.安装环境: 支持安装的操作系统版本:Windows XP,Windows7,Windows8,Windows10. CPU大小:Intel(R)Core(TM)i5-4210U CPU @1.7G ...
- Microsoft Visual Studio 2013安装及试用
我是在网上下载的vs2013版的安装包,下载的是压缩文件,解压后是2.86GB.安装包下载完成后我们就可以进入安装了. 同时建议最好在互联网连接的情况下安装. 打开下载好的文件,我们要选择.exe可执 ...
- github 学习心得
https://github.com/kongxiangyu/test 通过本次实验,学会了如何使用github来管理代码.如果是开源的项目,通过网站托管方式进行统一管理,当然是非常棒的,并且有很多功 ...