问题:如何快速把$cos^4xsin^3x$表示成正弦,余弦的线性组合?

分析:利用牛顿二项式展开以下表达式:

再利用欧拉公式$e^{i\theta}=cos\theta+isin\theta$

比如:

解答:

评:这样的变换,表示成线性组合在求积分的时候就显得很有用,大学自主招生迟早会考察以上变换。

MT【34】正余弦的正整数幂次快速表示成正余弦的线性组合的更多相关文章

  1. FZU-1752.(A^B mod C)(快速幂与快速乘优化)

    我把自己演哭了... 心酸.jpg 写了很多个版本的,包括数学公式暴力,快速幂TLE等等,最后想到了优化快速幂里的乘法,因为会爆longlong,但是和别人优化的效率简直是千差万别...? 本题大意: ...

  2. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  3. 尾数为0零BigDecimal不能装成正常数

    BigDecimal b1 = rs.getBigDecimal("binary_double_column"); System.out.println( "ceshi: ...

  4. 快速幂 ,快速幂优化,矩形快速幂(java)

    快速幂形式 public static int f(int a,int b,int c){ int ans =1; int base=a; while(b!=0){ if((b&1)!=0) ...

  5. 求幂大法,矩阵快速幂,快速幂模板题--hdu4549

    hdu-4549 求幂大法.矩阵快速幂.快速幂 题目 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 ...

  6. JS 提交反斜杠\替换成正斜杠/

    js将字符串中所有反斜杠\替换成正斜杠/ 区分正斜杠与反斜杠: 正斜杠:http://.http紧跟着的斜杠,离手输入最近的斜杠,shift中间斜杠.45度角斜杠.正斜杠不需要转义 反斜杠:回车与空格 ...

  7. 整数快速乘法/快速幂+矩阵快速幂+Strassen算法

    快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c  二.矩 ...

  8. 快速幂 & 矩阵快速幂

    目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分 ...

  9. GPU编程shader之正余弦波和幂/指数函数

    先上一个demo代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

随机推荐

  1. NowCoder110E Pocky游戏 状压DP

    传送门 题意:给出$N$个数和一个长为$M$.所有数在$[1,N]$范围之内的正整数序列$a_i$,求出这$N$个数的一种排列$p_1...p_N$使得$\sum\limits_{i=2}^M |p_ ...

  2. Luogu P4427 [BJOI2018]求和

    这是一道巨狗题,我已无力吐槽为什么我怎么写都不过 我们对于这种无修改的边权题目有一个经典的树上差分套路: \(ans=sum_x+sum_y-2\cdot sum_{LCA(x,y)}\) 这里的\( ...

  3. 随机森林和GBDT的几个核心问题

    随机森林random forest的pro和con是什么?优势是accuracy高,但缺点是速度会降低,并且解释性interpretability会差很多,也会有overfitting的现象. 为什么 ...

  4. HNOI2019 多边形 polygon

    HNOI2019 多边形 polygon https://www.luogu.org/problemnew/show/P5288 这题镪啊... 首先堆结论: 显然终止状态一定是所有边都连向n了 根据 ...

  5. copy constructor

    copy constructor也分为trivial和nontrivial两种 如果class展现出bitwise copy semantics(按位拷贝语义),则不会构造出 copy constru ...

  6. MongoDB日常运维操作命令小结

    总所周知,MongoDB是一个NoSQL非数据库系统,即一个数据库可以包含多个集合(Collection),每个集合对应于关系数据库中的表:而每个集合中可以存储一组由列标识的记录,列是可以自由定义的, ...

  7. python报错问题解决:'ascii' codec can't encode character

    之前部署了openstack虚拟化环境,有一天在使用nova list查看虚拟机的时候,突然报错!如下: [root@linux-node1 src]# nova listERROR (Unicode ...

  8. mysql操作命令梳理(1)-索引

    1.创建索引索引的创建可以在CREATE TABLE语句中进行,也可以单独用CREATE INDEX或ALTER TABLE来给表增加索引.以下命令语句分别展示了如何创建主键索引(PRIMARY KE ...

  9. Codeforces Round #503 (by SIS, Div. 2)-C. Elections

    枚举每个获胜的可能的票数+按照花费排序 #include<iostream> #include<stdio.h> #include<string.h> #inclu ...

  10. Linux 第八周实验 进程的切换和系统的一般执行过程

    姬梦馨 原创作品 <Linux内核分析>MOOC课程:http://mooc.study.163.com/course/USTC-1000029000 第八讲 进程的切换和系统的一般执行过 ...