bzoj1007/luogu3194 水平可见直线 (单调栈)
先按斜率从小到大排序,然后如果排在后面的点B和前面的点A的交点是P,那B会把A在P的右半段覆盖掉,A会把B在P的左半段覆盖掉。
然后如果我们现在又进来了一条线,它跟上一条的交点还在上一条和上上条的左边,这就说明上一条完全被覆盖了
这样的话,维护一个单调栈做一做就可以了
(要先处理一下,斜率相同的只留下B最大的,而且会有重合的线,都要输出)
#include<bits/stdc++.h>
#define pa pair<int,int>
#define ll long long
using namespace std;
const int maxn=; ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Line{
int a,b,i;
}p[maxn],q[maxn];
int N,NN,stk[maxn],sh;
bool flag[maxn]; inline bool cmp(Line a,Line b){
return a.a==b.a?a.b>b.b:a.a<b.a;
} inline double getx(Line a,Line b){
return (double)(b.b-a.b)/(a.a-b.a);
}
inline bool nsame(int a,int b){
return q[a].a!=q[b].a||q[a].b!=q[b].b;
} int main(){
int i,j,k;
N=rd();for(i=;i<=N;i++){
p[i].a=rd(),p[i].b=rd();p[i].i=i;
}
sort(p+,p+N+,cmp);
for(i=,j=;i<=N;i++){
if(p[i].a==p[i-].a&&p[i].b<p[i-].b) continue;
q[++j]=p[i];
}NN=j;
stk[sh=]=;
for(i=;i<=NN;i++){
while(sh>=&&nsame(stk[sh],i)&&(getx(q[i],q[stk[sh]])<=getx(q[stk[sh]],q[stk[sh-]]))) sh--;
stk[++sh]=i;
}for(i=sh;i;i--) flag[q[stk[i]].i]=;
for(i=;i<=N;i++) if(flag[i]) printf("%d ",i);
return ;
}
bzoj1007/luogu3194 水平可见直线 (单调栈)的更多相关文章
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- [HNOI2008]水平可见直线 单调栈
题目描述:在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=- ...
- 【BZOJ1007】水平可见直线(单调栈)
[BZOJ1007]水平可见直线(单调栈) 题解 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的 ...
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
- bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com
Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...
随机推荐
- Python从菜鸟到高手(1):初识Python
1 Python简介 1.1 什么是Python Python是一种面向对象的解释型计算机程序设计语言,由荷兰人吉多·范罗苏姆(Guido van Rossum)于1989年发明,第一个公开发行版 ...
- TDD、BDD、ATDD、DDD 软件开发模式
TDD.BDD.ATDD.DDD 软件开发模式 四个开发模式意思: TDD:测试驱动开发(Test-Driven Development) BDD:行为驱动开发(Behavior Driven Dev ...
- 微信小程序开发工具 ubuntu linux版本
安装 http://blog.csdn.net/zhangyingguangails/article/details/72517182 sudo apt install wine sudo git c ...
- Redis哨兵模式(sentinel)学习总结及部署记录(主从复制、读写分离、主从切换)
Redis的集群方案大致有三种:1)redis cluster集群方案:2)master/slave主从方案:3)哨兵模式来进行主从替换以及故障恢复. 一.sentinel哨兵模式介绍Sentinel ...
- Docker容器学习梳理 - 容器登陆方法梳理(attach、exec、nsenter)
对于运行在后台的Docker容器,我们运维人员时常是有登陆进去的需求.登陆Docker容器的方式:1)使用ssh登陆容器.这种方法需要在容器中启动sshd,存在开销和攻击面增大的问题.同时也违反了Do ...
- PHP magic_quotes_gpc 和 addslashes解析
默认情况下,PHP 指令 magic_quotes_gpc 为 on,它主要是对所有的 GET.POST 和 COOKIE 数据自动运行 addslashes().不要对已经被 magic_quote ...
- beta版使用说明
StudyAssistant说明书 我们的软件使用简单方便,下面就让我们在介绍软件界面的同时一同来介绍我们的软件使用方法: 1.这是我们软件的首页界面,单刀直入,简单明了,四科同时类课程,更好的帮助同 ...
- back
#include<stdio.h> int main() { int a[5],b[5][5]; int i,j,sum,max,m,n; printf("输 ...
- PHP使用MySQL实现消息队列
消息队列常用在流量削峰(秒杀场景),异步通信等地方. 大体的结构如下: 类似于消费者和生产者的关系,首先生产者在消息队列未满的时候,才将生产的产品放进消息队列中:消费者在消息队列不为空的时候,才从消息 ...
- Java Heap Dump On OutOfMemoryError
-XX:+HeapDumpOnOutOfMemoryError Batch "C:\Program Files\Java\jdk1.8.0_162\bin\java.exe" -X ...