题意: 

一个矩形区域被分成 m*n 个单元编号为 (1, 1)至 (m, n),左上为 (1, 1),右下为(m, n)。给出P(k)i,j,其中 1 ≤ i ≤ m,1 ≤ j ≤ n,1 ≤ k ≤ 4,表示了 (i, j)到 (i+1, j),(i, j+1),(i-1, j),(i, j-1)的概率。一个骑士在 (1, 1),按照给定概率走,每步都于之前无关,问到达 (m, n)的期望步数。

解析;

很容易想到

然后移项  写出行列式

图截自大佬题解

矩阵中 概率为负 1为正 是因为移项

然后从最后一行 向前化简化出上三角行列式就好了

在这个矩阵中,每行的系数都占据了(2m+1)的长度,且以f(i, j)为中心
因此我们在高斯消元的时候,只需要消除后m行中的m个系数

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int n, m, tot;
double p[maxn][maxn]; void gauss()
{
for(int i = tot, j = tot; i >= ; i--, j--)
{
for(int k1 = i - ; k1 >= i - m - && k1 >= ; k1--)
{
double f = p[k1][j] / p[i][j];
for(int k2 = j - ; k2 >= j - m && k2 >= ; k2--)
{
p[k1][k2] -= f * p[i][k2];
}
p[k1][tot + ] -= f * p[i][tot + ];
}
}
} int main()
{
while(cin >> n >> m && n + m)
{
tot = n * m;
double x;
mem(p, );
for(int k = ; k < ; k++)
for(int i = ; i <= n; i++)
for(int j = ; j <= m; j++)
{
cin >> x;
int pos = (i - ) * m + j;
if(k == ) p[pos][pos] = -;
if(k == && i < n) p[pos][pos + m] = x;
else if(k == && j < m) p[pos][pos + ] = x;
else if(k == && i > ) p[pos][pos - m] = x;
else if(k == && j > ) p[pos][pos - ] = x;
}
for(int i=; i<=tot; i++) p[i][tot+] = -;
p[tot][tot + ] = ;
gauss();
printf("%.6f\n", p[][tot + ] / p[][]);
} return ;
}

参考:

https://www.cnblogs.com/cjfdf/p/8467655.html

https://www.cnblogs.com/swm8023/archive/2012/09/01/2666303.html

First Knight UVALive - 4297(优化高斯消元解概率dp)的更多相关文章

  1. 【BZOJ 3640】JC的小苹果 (高斯消元,概率DP)

    JC的小苹果 Submit: 432  Solved: 159 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话 ...

  2. BZOJ 2707: [SDOI2012]走迷宫 拓扑+高斯消元+期望概率dp+Tarjan

    先Tarjan缩点 强连通分量里用高斯消元外面直接转移 注意删掉终点出边和拓扑 #include<cstdio> #include<cstring> #include<a ...

  3. 【Luogu】P3232游走(高斯消元解概率)

    题目链接 参见远航之曲dalao的题解,我再写一遍的话就没啥意思了. #include<cstdio> #include<cstring> #include<algori ...

  4. [置顶] hdu 4418 高斯消元解方程求期望

    题意:  一个人在一条线段来回走(遇到线段端点就转变方向),现在他从起点出发,并有一个初始方向, 每次都可以走1, 2, 3 ..... m步,都有对应着一个概率.问你他走到终点的概率 思路: 方向问 ...

  5. 高斯消元与期望DP

    高斯消元可以解决一系列DP序混乱的无向图上(期望)DP DP序 DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前: (通俗的说,在一个状态转移方程中‘=’左侧的状态应该在 ...

  6. bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...

  7. 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组

    [题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...

  8. 【高斯消元解xor方程】BZOJ1923-[Sdoi2010]外星千足虫

    [题目大意] 有n个数或为奇数或为偶数,现在进行m次操作,每次取出部分求和,告诉你这几次操作选取的数和它们和的奇偶性.如果通过这m次操作能得到所有数的奇偶性,则输出进行到第n次时即可求出答案:否则输出 ...

  9. 【高斯消元解xor方程组】BZOJ2466-[中山市选2009]树

    [题目大意] 给出一棵树,初始状态均为0,每反转一个节点的状态,相邻的节点(父亲或儿子)也会反转,问要使状态均为1,至少操作几次? [思路] 一场大暴雨即将来临,白昼恍如黑夜!happy! 和POJ1 ...

随机推荐

  1. fastcgi_next_upstream error timeout invalid_header http_500 http_503(转)

    location / proxy_pass http://nodelist; fastcgi_next_upstream error timeout invalid_header http_500 h ...

  2. odoo系统之产品表

    # 输入产品带出它默认的包装方式\单位\品名\规格 def get_product_unit(self, cr, uid,ids,product_id,pcust_order_no,pdate_pla ...

  3. JDK 升级问题小结

    JDK8 发布很久了,它提供了许多吸引人的新特性,能够提高编程效率. 如果是新的项目,使用 JDK8 当然是最好的选择.但是,对于一些老的项目,升级到 JDK8 则存在一些兼容性问题,是否升级需要酌情 ...

  4. OpenStack报错:MessagingTimeout: Timed out waiting for a reply to message ID

    L3.agent中出现大量消息超时错误,对网络的操作各种异常. 报错如下: -- :: ERROR neutron.agent.l3.agent [req-db9207e6--4f23-8c19-0d ...

  5. Canvas绘图优化之使用位图--基于createjs库

    在地图上实时绘制大量(万级别)图形,实时绘制的原因是因为各个图形形状不同,图形要按照后端传送的参数来绘制. 用canvas绘制图形比较方便,javascript的api接口也比较简单.现在也有很多的j ...

  6. EZ 2018 06 17 NOIP2018 模拟赛(十九)

    这次的题目难得的水,但是由于许多哲学的原因,第二题题意表述很迷. 然后是真的猜题意了搞了. 不过这样都可以涨Rating我也是服了. Upt:链接莫名又消失了 A. 「NOIP2017模拟赛11.03 ...

  7. elaticsear no [query] registered for [filtered] 错误

    1.问题描述 执行语句: GET /megacorp/employee/_search { "query" : { "filtered" : { "f ...

  8. 【DDD】使用领域驱动设计思想实现业务系统

    最近新接了一个业务系统——社区服务系统,为了快速熟悉和梳理老系统的业务逻辑和代码,同时对老系统代码做一些优化,于是打算花上一个月时间不间断地对老系统服务进行重构.同时,考虑到社区业务的复杂性,想起了之 ...

  9. 原创超清的 Webpack2 视频教程

    原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...

  10. Linux下防御DDOS攻击的操作梳理

    DDOS的全称是Distributed Denial of Service,即"分布式拒绝服务攻击",是指击者利用大量“肉鸡”对攻击目标发动大量的正常或非正常请求.耗尽目标主机资源 ...