一、介绍

bvlc_reference_caffenet网络模型是由AlexNet的网络模型改写的,输入图片尺寸大小为227x227x3,输出的为该图片对应1000个分类的概率值。

介绍参考:caffe/models/bvlc_reference_caffenet at master · BVLC/caffe · GitHub  https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

二、利用pycaffe可视化网络结构

caffe/python$ python draw_net.py ../models/bvlc_reference_caffenet/deploy.prototxt deploy.png

网络结构:

大图下载地址:链接:https://pan.baidu.com/s/1ggeKlLstZQrOklvnZ03L5A 密码:x7r8

三、matlab可视化

1、网络权值可视化:https://www.cnblogs.com/smbx-ztbz/p/9343874.html

2、特征图可视化

(1)visualize_feature_maps.m

function [] = visualize_feature_maps(w, s)
h = max(size(w, 1), size(w, 2));
g = h + s;
c = size(w, 3);
cv = ceil(sqrt(c));%按长宽相等方式排布,ceil向上取整
W = zeros(g*cv, g*cv); for u = 1:cv
for v = 1:cv
tw = zeros(h, h);
if (((u-1)*cv + v) <= c)
tw = w(:, :, (u-1)*cv+v, 1)';%只对第四维度为1进行可视化,即第一个样本进行可视化
tw = tw - min(min(tw));
tw = tw / max(max(tw))*255;
end
W(g*(u-1) + (1:h), g*(v-1) + (1:h)) = tw;
end
end
W = uint8(W);
figure, imshow(W);

(2)fm_visual.m

clear;
clc;
close all;
addpath('matlab')
caffe.set_mode_cpu();
sprintf(['Caffe Version = ', caffe.version(), '\n']);
net = caffe.Net('models/bvlc_reference_caffenet/deploy.prototxt',...
'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel', 'test'); sprintf('Load net done. Net layers: ');
net.layer_names sprintf('Net blobs: ');
net.blob_names sprintf('Now preparing data...\n');
im = imread('examples/images/cat.jpg');
figure;imshow(im);title('Original Image');
d = load('matlab/+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;%256x256x3
IMAGE_DIM = 256;
CROPPED_DIM = 227; %Convert an fimage returned by Matlab's imread to im_data in caffe's data
%format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); %permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); %flip width and height
im_data = single(im_data); %convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); %resize im_data 使得跟mean_data尺寸一致
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
im = imresize(im_data, [CROPPED_DIM CROPPED_DIM], 'bilinear'); %resize im_data
km = cat(4, im, im, im, im, im);%在第四个维度往后叠加,第三维度为1。 227x227x3x5
pm = cat(4, km, km);%在第四个维度往后叠加。 227x227x3x10
input_data = {pm};%输入的数据为输入图片拷贝10份 scores = net.forward(input_data);%cell 1000x10,输入的样本个数为10 scores = scores{1};%指向第一个cell,转换为矩阵
scores = mean(scores, 2); %take average scores over 10 crops,对10个样本求均值 [~, maxlabel] = max(scores);%获取概率均值最大的索引 282 maxlabel %显示所属类别概率最大的下标
figure; plot(scores); fm_data = net.blob_vec(1);%输入数据
d1 = fm_data.get_data();
sprintf('Data size = ');
size(d1) %227x227x3x10
visualize_feature_maps(d1, 1); fm_conv1 = net.blob_vec(2);
f1 = fm_conv1.get_data();
sprintf('Feature map conv1 size = ');
%kernel_size: 11, stride: 4, pad: 0 (pad为0表示不对边界进行扩展)
size(f1)%55x55x96x10
visualize_feature_maps(f1, 1); fm_conv2 = net.blob_vec(5);
f2 = fm_conv2.get_data();
sprintf('Feature map conv2 size = ');
%kernel_size: 5, stride: 1, pad: 2 (步进应该为2?)
size(f2) %27 27 256 10
visualize_feature_maps(f2, 1); fm_conv3 = net.blob_vec(8);
f3 = fm_conv3.get_data();
sprintf('Feature map conv3 size = ');
%kernel_size: 3, stride: 1, pad: 1 (步进应该为2?)
size(f3)%13 13 384 10
visualize_feature_maps(f3, 1); fm_conv4 = net.blob_vec(9);
f4 = fm_conv4.get_data();
sprintf('Feature map conv4 size = ');
%kernel_size: 3, stride: 1, pad: 1
size(f4)%13 13 384 10
visualize_feature_maps(f4, 1); fm_conv5 = net.blob_vec(10);
f5 = fm_conv5.get_data();
sprintf('Feature map conv5 size = ');
%kernel_size: 3, stride: 1, pad: 1
size(f5)%13 13 256 10
visualize_feature_maps(f5, 1);

(3)说明

a、scores为输入图片对应1000个类别的概率值,maxlabel为对应最大概率值的下标,及所输入图像被分为哪一类,得到该图片的最大概率对应的索引为282。

b、类别索引和名称对应表可通过data/ilsvrc12/get_ilsvrc_aux.sh 下载解压,在synset_words.txt文件中,根据行号,来找对应的类别。

四、对输入图片进行类别预测

clear;
clc;
close all;
addpath('matlab')
caffe.set_mode_cpu();
sprintf(['Caffe Version = ', caffe.version(), '\n']);
net = caffe.Net('models/bvlc_reference_caffenet/deploy.prototxt',...
'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel', 'test'); im = imread('examples/images/cat.jpg');
% figure;imshow(im);title('Original Image');
d = load('matlab/+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;%256x256x3
IMAGE_DIM = 256;
CROPPED_DIM = 227; %Convert an fimage returned by Matlab's imread to im_data in caffe's data
%format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); %permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); %flip width and height
im_data = single(im_data); %convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); %resize im_data 使得跟mean_data尺寸一致
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
im = imresize(im_data, [CROPPED_DIM CROPPED_DIM], 'bilinear'); %resize im_data
km = cat(4, im, im, im, im, im);%在第四个维度往后叠加,第三维度为1。 227x227x3x5
pm = cat(4, km, km);%在第四个维度往后叠加。 227x227x3x10
input_data = {pm};%输入的数据为输入图片拷贝10份 scores = net.forward(input_data);%cell 1000x10,输入的样本个数为10 scores = scores{1};%指向第一个cell,转换为矩阵
scores = mean(scores, 2); %take average scores over 10 crops,对10个样本求均值 [~, maxlabel] = max(scores);%获取概率均值最大的索引 maxlabel %显示所属类别概率最大的下标
figure; plot(scores); %打印出对应的label字符串
ffid = fopen('data/ilsvrc12/synset_words.txt','r');
for i = 1:1000
tline = fgetl(ffid);
if(i == maxlabel)
% tline
break;
end
end
label_string = tline(11:size(tline, 2));
sprintf('predict value is: %s\n', label_string)
sprintf('probability is: %f\n', scores(maxlabel))

输出:

maxlabel =

   282

ans =

predict value is: tabby, tabby cat

ans =

probability is: 0.288967

可用其他图片进行测试,例如网上下载个熊猫图片进行测试。

参考:

caffe中pad的作用 - CSDN博客  https://blog.csdn.net/xunan003/article/details/79110253

与AlexNet对比:Caffe学习笔记(二)——AlexNet模型 - CSDN博客  https://blog.csdn.net/hong__fang/article/details/52080280

【AlexNet】模型训练与测试导读 - CSDN博客  https://blog.csdn.net/xiequnyi/article/details/52276240?locationNum=5

Caffe下自己的数据训练和测试 - CSDN博客  https://blog.csdn.net/qqlu_did/article/details/47131549

end

BVLC CaffeNet可视化及类别预测的更多相关文章

  1. pytorch中网络特征图(feture map)、卷积核权重、卷积核最匹配样本、类别激活图(Class Activation Map/CAM)、网络结构的可视化方法

    目录 0,可视化的重要性: 1,特征图(feture map) 2,卷积核权重 3,卷积核最匹配样本 4,类别激活图(Class Activation Map/CAM) 5,网络结构的可视化 0,可视 ...

  2. CaffeNet用于Flickr Style数据集上的风格识别

    转自 http://blog.csdn.net/liumaolincycle/article/details/48501423 微调是基于已经学习好的模型的,通过修改结构,从已学习好的模型权重中继续训 ...

  3. 深度学习与计算机视觉教程(15) | 视觉模型可视化与可解释性(CV通关指南·完结)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  4. 4-Spark高级数据分析-第四章 用决策树算法预测森林植被

    预测是非常困难的,更别提预测未来. 4.1 回归简介 随着现代机器学习和数据科学的出现,我们依旧把从“某些值”预测“另外某个值”的思想称为回归.回归是预测一个数值型数量,比如大小.收入和温度,而分类则 ...

  5. SVM:SVM之Classification根据已有大量数据集案例,输入已有病例的特征向量实现乳腺癌诊断高准确率预测—Jason niu

    load BreastTissue_data.mat n = randperm(size(matrix,1)); train_matrix = matrix(n(1:80),:); train_lab ...

  6. chapter02 K近邻分类器对Iris数据进行分类预测

    寻找与待分类的样本在特征空间中距离最近的K个已知样本作为参考,来帮助进行分类决策. 与其他模型最大的不同在于:该模型没有参数训练过程.无参模型,高计算复杂度和内存消耗. #coding=utf8 # ...

  7. chapter02 朴素贝叶斯分类器对新闻文本数据进行类型预测

    基本数学假设:各个维度上的特征被分类的条件概率之间是相互独立的.所以在特征关联性较强的分类任务上的性能表现不佳. #coding=utf8 # 从sklearn.datasets里导入新闻数据抓取器f ...

  8. 时间序列深度学习:状态 LSTM 模型预测太阳黑子

    目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 ...

  9. Python之机器学习-波斯顿房价预测

    目录 波士顿房价预测 导入模块 获取数据 打印数据 特征选择 散点图矩阵 关联矩阵 训练模型 可视化 波士顿房价预测 导入模块 import pandas as pd import numpy as ...

随机推荐

  1. backbone点滴

    可以查看http://www.css88.com/doc/backbone/ backbone与angular http://www.infoq.com/cn/articles/backbone-vs ...

  2. 七天学会ASP.NET MVC ——深入理解ASP.NET MVC

    七天学会ASP.NET MVC (一)——深入理解ASP.NET MVC   系列文章 七天学会ASP.NET MVC (一)——深入理解ASP.NET MVC 七天学会ASP.NET MVC (二) ...

  3. Symbol Vs String

    最重要区别 1 symbol存入内存后,始终存在,如果不进行垃圾收集,可能导致内存泄漏. String只会存在于某个创建它的作用域内.即有生命周期的. 2.唯一性. \\进入控制台 >" ...

  4. Linux - 7种运行级别

    目录:etc/rc.d/init.d 1. linux开机过程 2. 运行级别(0-6) 存储位置 etc/inittab,开机加载,也可以用命令init [数字]切换. # 0 - 停机(默认时为0 ...

  5. 【JS】【5】request.getHeader("referer")的作用

    正文: request.getHeader("referer"):获取来访者地址 注意:只有通过链接访问当前页的时候,才能获取上一页的地址,以下情况是获取不到值的: 只有通过链接访 ...

  6. canvas实现点连线动画

    给定一系列坐标(x, y)点, 实现将各个点按照先后顺序连接起来的动画.还有两个要求: 1.点与点之间直接用线段连接, 不用考虑曲线 2.动画支持暂停, 继续, 重头开始播放功能 这个功能该怎么实现呢 ...

  7. flask项目部署

    1.安装 安装ssh 新版本安装位 apt/apt-get 老版本为 apt-get 安装以后 ifconfig查看当前的ip地址 如果网络不在同一个ip段 将网络模式设置为桥接 安装pip3 sud ...

  8. PAT 1077 Kuchiguse

    1077 Kuchiguse (20 分)   The Japanese language is notorious for its sentence ending particles. Person ...

  9. 20175227张雪莹 2018-2019-2 《Java程序设计》第四周学习总结

    20175227张雪莹 2018-2019-2 <Java程序设计>第四周学习总结 教材学习内容总结 一.子类和父类. 1.子类只继承父类中的protected和public访问权限的成员 ...

  10. laravel5.5 调用系统自带登陆认证auth

    1执行命令 php artisan make:auth 2 编辑文件 config/auth guardes 'admin' => [ 'driver' => 'session', 'pr ...