Autograd: 自动求导

pyTorch里神经网络能够训练就是靠autograd包。我们来看下这个包,然后我们使用它来训练我们的第一个神经网络。

autograd 包提供了对张量的所有运算自动求导。它是一种在运行时才被定义的,意味着反向传播只有再代码运行的时候才会计算,每次循环的时候都可以不同,就是说可以有不同的计算图。

用以下几个例子来看autograd:

张量

torch.Tensor 是torch库的核心类。如果你把Tensor类的 .requires_grad 设置为True,它就会计算其上的梯度。 当你计算完所有的值后使用 .backward() 就可以自动的计算所有的导数。 该张量的梯度会累加.grad 属性。

To stop a tensor from tracking history, you can call .detach() to detach it from the computation history, and to prevent future computation from being tracked.

To prevent tracking history (and using memory), you can also wrap the code block in with torch.no_grad():. This can be particularly helpful when evaluating a model because the model may have trainable parameters with requires_grad=True, but for which we don’t need the gradients.

有一个对自动求导实现非常关键的类:Function。

Tensor Function 互相连接起来,构建了一个无圈图,对所有的历史进行了编码。每个张量都有一个叫  .grad_fn 的属性,是生成该tensor的Function的索引(而那些由我们创建的Tensor的.grad_fn是None)

如果你想计算导数,那么你就可以对一个Tensor调用它的.backward()方法。如果Tensor是一个标量(只有一个元素的数据),你不需要指明backward()的任何参数,如果它有多个元素的话,就需要指定一个gradient的参数,该参数与调用该Tensor的形状相同。

import torch

创建一个tensor并且设置 requires_grad=True 来跟踪计算。

x = torch.ones(2, 2, requires_grad=True)
print(x)

输出:

tensor([[1., 1.],
[1., 1.]], requires_grad=True)

给它来个运算:

y = x + 2
print(y)

输出:

tensor([[3., 3.],
[3., 3.]], grad_fn=<AddBackward0>)

y 是有运算产生的张量,所以它有grad_fn

print(y.grad_fn)

输出:

<AddBackward0 object at 0x7f0ea616bac8>

给 y再来一些运算:

z = y * y * 3
out = z.mean() print(z, out)

输出:

tensor([[27., 27.],
[27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward1>)

.requires_grad_( ... )改变现有张量的 requires_grad 标志。如果没有提供.requires_grad参数的话,输入的标志默认是False。参看例子: #这在fine tune神经网络时候很有用,特别是迁移的时候

a = torch.randn(2, 2)
a = ((a * 3) / (a - 1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b = (a * a).sum()
print(b.grad_fn)

输出:

False
True
<SumBackward0 object at 0x7f0e86396e48>

梯度

Let’s backprop now Because out contains a single scalar, out.backward() is equivalent to out.backward(torch.tensor(1)).

让我们反向传播,由于out是一个标量,out.backward() 等价于 out.backward(torch.tensor(1)).

out.backward()

输出 d(out)/dx的梯度

print(x.grad)

输出:

tensor([[4.5000, 4.5000],
[4.5000, 4.5000]])

可以得到一个4*4的元素是 4.5的举证。让我们称为  out 张量。

至于这个函数的偏导数怎么计算,参见微积分吧!

有了autograd,我们可以做一些疯狂的事情!

x = torch.randn(3, requires_grad=True)

y = x * 2
while y.data.norm() < 1000:
y = y * 2 print(y)

输出:

tensor([-1178.9551,  1202.9015,   293.6342], grad_fn=<MulBackward0>)  #每次的输出可能不同
gradients = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(gradients) print(x.grad)

输出:

tensor([ 102.4000, 1024.0000,    0.1024])

You can also stop autograd from tracking history on Tensors with .requires_grad=True by wrapping the code block in with torch.no_grad():

你可以使用with torch.no_grad()停止自动的梯度计算,即使tensor的属性.requires_grad=True

print(x.requires_grad)
print((x ** 2).requires_grad) with torch.no_grad():
print((x ** 2).requires_grad)

Out:

True
True
False

更多阅读:

autogradFunction 的文档在: http://pytorch.org/docs/autograd

什么是pytorch(2Autograd:自动求导)(翻译)的更多相关文章

  1. Pytorch Autograd (自动求导机制)

    Pytorch Autograd (自动求导机制) Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心. 本文通过logisti ...

  2. pytorch的自动求导机制 - 计算图的建立

    一.计算图简介 在pytorch的官网上,可以看到一个简单的计算图示意图, 如下. import torchfrom torch.autograd import Variable x = Variab ...

  3. Pytorch学习(一)—— 自动求导机制

    现在对 CNN 有了一定的了解,同时在 GitHub 上找了几个 examples 来学习,对网络的搭建有了笼统地认识,但是发现有好多基础 pytorch 的知识需要补习,所以慢慢从官网 API进行学 ...

  4. 『PyTorch x TensorFlow』第六弹_从最小二乘法看自动求导

    TensoFlow自动求导机制 『TensorFlow』第二弹_线性拟合&神经网络拟合_恰是故人归 下面做了三个简单尝试, 利用包含gradients.assign等tf函数直接构建图进行自动 ...

  5. Pytorch Tensor, Variable, 自动求导

    2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地 ...

  6. [深度学习] pytorch学习笔记(1)(数据类型、基础使用、自动求导、矩阵操作、维度变换、广播、拼接拆分、基本运算、范数、argmax、矩阵比较、where、gather)

    一.Pytorch安装 安装cuda和cudnn,例如cuda10,cudnn7.5 官网下载torch:https://pytorch.org/ 选择下载相应版本的torch 和torchvisio ...

  7. PyTorch官方中文文档:自动求导机制

    自动求导机制 本说明将概述Autograd如何工作并记录操作.了解这些并不是绝对必要的,但我们建议您熟悉它,因为它将帮助您编写更高效,更简洁的程序,并可帮助您进行调试. 从后向中排除子图 每个变量都有 ...

  8. 『PyTorch』第三弹_自动求导

    torch.autograd 包提供Tensor所有操作的自动求导方法. 数据结构介绍 autograd.Variable 这是这个包中最核心的类. 它包装了一个Tensor,并且几乎支持所有的定义在 ...

  9. Pytorch之Variable求导机制

    自动求导机制是pytorch中非常重要的性质,免去了手动计算导数,为构建模型节省了时间.下面介绍自动求导机制的基本用法. #自动求导机制 import torch from torch.autogra ...

随机推荐

  1. 关于MVC RouteExistingFiles疑问后续

    前两天写了<关于MVC RouteExistingFiles疑问>,本来希望寻求大佬快速解答,奈何无人问津. 只能查看.NET 源代码,可以使用反编译工具(我用IL spy),也可以在线查 ...

  2. Linux中通过Socket文件描述符寻找连接状态介绍

    针对下文的总结:socket是一种文件描述符 进程的打开文件描述符表 Linux的三个系统调用:open,socket,pipe 返回的都是一个描述符.不同的进程中,他们返回的描述符可以相同.那么,在 ...

  3. 新建vue项目中遇到的报错信息

    在npm install的时候会报错,经过上网查阅资料之后,解决方法如下: 0.先升级npm版本:npm install -g npm   有可能是npm版本过低报错 1.然后清理缓存: npm ca ...

  4. 二叉树放置照相机 Binary Tree Cameras

    2019-03-27 15:39:37 问题描述: 问题求解: 很有意思的问题,问题描述简单,求解过程也可以非常的简洁,是个难得的好题. 求解的过程是自底向上进行分析,对于叶子节点,如果在叶子上放置照 ...

  5. 日常英语---八、REBOOT - What is the difference? -MapleStory

    日常英语---八.REBOOT - What is the difference? -MapleStory 一.总结 一句话总结: trade transfer drop_rate equipment ...

  6. blob对象的应用

    demo:https://pan.baidu.com/s/1hsq2vgK 最近在学习blob,利用blob编写了两个业务场景,详情请下载demo查看 1:大文件分片下载,服务器端使用.net接收客户 ...

  7. python:assert

    assert 断言 使用assert断言是个好习惯 在没完善一个程序之前,我们不知道程序在哪里会出错,与其让它在运行最崩溃,不如在出现错误条件时就崩溃,这时候就需要assert断言的帮助. asser ...

  8. 『TensorFlow』线程控制器类&变量作用域

    线程控制器类 线程控制器原理: 监视tensorflow所有后台线程,有异常出现(主要是越界,资源循环完了)时,其should_stop方法就会返回True,而它的request_stop方法则用于要 ...

  9. makefile中 = := += 的区别

    = 是最基本的赋值 := 是覆盖之前的值 ?= 是如果没有被赋值过就赋予等号后面的值 += 是添加等号后面的值 1.“=” make会将整个makefile展开后,再决定变量的值.也就是说,变量的值将 ...

  10. 数组去重复的时候遇到length变成1 的bug

    arrUnique:function(arr){ //传入空数组的时候有bug,length会变成1 所以修复下 if(arr.length == 0){ return []; } arr.sort( ...