Common Probability Distributions

Probability Distribution

A probability distribution describes the probabilities of all the possible outcomes for a random variable.

A discrete random variable if one for which the number of possible outcomes can be counted, and for each possible outcome, there is a measurable and positive probability.

A continuous random variable is one for which the number of possible outcome is infinite, even if lower and upper bounds exist.

A cumulative distribution function (CDF) defines the probability that a random variable, X, takes on a value equal to or less than a specific value, x.

F(x)=P(X<=x)

A discrete uniform random variable is one for which the probabilities for all possible outcomes for a discrete random variable are equal.

Binomial Distribution(二项分布)

A binomial random variable may be defined as the number of "success" in a given number of trials, whereby the outcome can be either "success" or "failure". The probability of success, p, is constant for each trial, and the trails are independent.

Note: binomial distribution is a discrete distribution.

A binomial random variable for which the number of trials is 1 is called Bernoulli random variable (伯努利随即变量).

Expected value

For a given serial of n trials,, the expected number of success, or E(X), is given by the following formula:

expectedd value of X = E(X) = np

The intuition is straightforward; if we perform n trails and the probability of success on each trail is p, we expect np successes.

Variance

The variance of a binomial random variable is given by:

variance of X = np(1-p)

Tracking Error

Tracking error is the difference between the total return on a portfolio and the total return on the benchmark against which its performance is measured.

Note: The expression "tracking error" is sometimes used interchangeably with "tracking risk", which refer to the standard deviation of the differences between a portfolio's return and its benchmark return.

Continuous Uniform Distribution

The continuous uniform distribution is defined over a range that spans between some lower limit, a, and some upper limit, b, which serve as the parameters of the distribution. Outcomes can only occur between a and b, and since we are dealing with a continuous distribution, even if a < x < b, P(X=x)=0.

  • PDF (probability density function)

  • CDF (continuous distribution function)

Normal Distribution

Note: some properties of normal distribution:

  1. Skewness=0
  2. Kurtosis=3
  3. A linear combination of normally distributed random variables is also normally distributed.

Standard Normal Distribution (标准正太分布) and Z value

The standard normal distribution is a normal distribution that has been standardized so that is has a mean of zero and a standard deviation of 1.

To standardize an observation from a given normal distribution,, the z-value of the observation must be calculated. The z-value represents the number of standard deviations a given observation is from the population mean. Standardization is the process of converting an observed value for a random variable to its z-value.

z = [observation-population mean]/[standard deviation] = [x-μ]/σ

Confidence Interval(置信区间)

A confidence interval is a range of values around the expected outcome within which we expect the actual outcome to be some specified percentage of the time. A 95% confidence interval is a range that we expect the random variable to be in 95% of time. For a normal distribution, this interval is based on the expected value(sometimes called a point estimate) of the random variable and on its variability, which we measure with standard deviation.

Note: 1-confidence interval = α (which is called significance level)

For any normally distributed random variable, 68% of outcomes are within one standard deviation of the expected value (mean), and approximately 95% of the outcomes are within two standard deviations of the expected value.

Shortfall risks, Safety-First ratio

Shortfall risk is the probability that a portfolio value or return will fall below a particular(target) value or return over a given time period.

Roy's safety-first criterion states that the optimal portfolio minimizes the probability that the return of the portfolio falls below some minimum acceptable level. This minimum acceptable level is called the threshold level.

If portfolio returns area normally distributed, then Roy's safety-first criterion can be stated as:

Note that the SFR is the number of standard deviations below the mean. Thus the portfolio with the larger SFR has the lower probability of returns below the threshold return.

Lognormal distribution(对数正太分布)

The lognormal distribution is generated by the function e^x, where x is normally distributed. Since the natural logarithm, ln, of e^x is x, the logarithms of lognormally distributed random variables are normally distributed.

  • The log-normal distribution is skewed to the right
  • The log-normal distribution is bounded from below by zero that it is useful for modeling asset prices which never take negative values.

PMF(Probability Mass Function)

PMF(概率质量函数),这个函数是值到其概率的映射。

如果要处理的数据比较少,PMF很合适。但随着数据的增加,每个值的概率就会降低,而随机噪声的影响就会增大。

CDF(Cumulative Distribution Function)

CDF(累积分布函数), 这个函数是值到其在分布中百分等级的映射。

  def Cdf(t, x):
count = 0.0
for value in t:
if value <= x:
count += 1.0
prob = count / len(t)
return prob

我们可以计算任意值x的CDF, 而不仅仅是样本中出现的值。如果x比样本中最小的值还要小,那么CDF(x)就等于0.如果x比样本中的最大值还要大,那么CDF(x)就是1.

帕累托分布

See百度百科 and 维基百科

帕累托分布(Pareto distribution)是以意大利经济学家维弗雷多·帕雷托命名的。 是从大量真实世界的现象中发现的幂次定律分布。这个分布在经济学以外,也被称为布拉德福分布。

帕累托因对意大利20%的人口拥有80%的财产的观察而著名,后来被约瑟夫·朱兰和其他人概括为帕累托法则(80/20法则),后来进一步概括为帕累托分布的概念。

在帕累托分布中,如果X是一个随机变量, 则X的概率分布如下面的公式所示:

其中x是任何一个大于xmin的数,xmin是X最小的可能值(正数),k是为正的参数。帕累托分布曲线族是由两个数量参数化的:xmin和k。分布密度则为

Common Probability Distributions的更多相关文章

  1. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  2. PRML读书笔记——2 Probability Distributions

    2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...

  3. PRML读书会第二章 Probability Distributions(贝塔-二项式、狄利克雷-多项式共轭、高斯分布、指数族等)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:11:56 开始吧,先不要发言了,先讲PRML第二章Probability Dis ...

  4. Study note for Continuous Probability Distributions

    Basics of Probability Probability density function (pdf). Let X be a continuous random variable. The ...

  5. Tensorflow Probability Distributions 简介

    摘要:Tensorflow Distributions提供了两类抽象:distributions和bijectors.distributions提供了一系列具备快速.数值稳定的采样.对数概率计算以及其 ...

  6. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  7. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  8. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  9. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

随机推荐

  1. Java 程序内存分析

    转自:http://www.iteye.com/topic/528230 java程序内存主要分为了2个部分,包括stack segment(栈内存区).heap segment(堆内存区). 在分析 ...

  2. GET 和 POST的区别

    1.最普遍的答案 GET使用URL或Cookie传参.而POST将数据放在BODY中. GET的URL会有长度上的限制,则POST的数据则可以非常大. POST比GET安全,因为数据在地址栏上不可见. ...

  3. Linux下串口操作之数据拼接

    串口操作中,特别以非阻塞的方式读取和发送数据,做好进程之间的同步很重要.有时我们会发现这样一个问题,在进行read操作时,一次read不能获得一个完整的数据帧,这就好比你买了一个电脑,送货的先把显示器 ...

  4. APUE读书笔记-第15章-进程间通信

    15.1 引言 *进程之间交换信息的方法可以经由fork或exec传送打开文件,或者通过文件系统 *进程之间相互通信的其他技术——IPC(InterProcess Communication)包括半双 ...

  5. uva 10721 - Bar Codes(dp)

    题目链接:uva 10721 - Bar Codes 题目大意:给出n,k和m,用k个1~m的数组成n,问有几种组成方法. 解题思路:简单dp,cnt[i][j]表示用i个数组成j, cnt[i][j ...

  6. 使用web_url注意Resource的选项

    在使用web_url的时候,一定注意Resource的使用,一般最好使用Resource=0,如果使用Resource=1,那么一定要修改配置. Resource Attribute If Resou ...

  7. SetWindowsHookEx 钩子

    基本介绍 钩子(Hook),是Windows消息处理机制的一个平台,应用程序可以在上面设置子程以监视指定窗口的某种消息,而且所监视的窗口可以是其他进程所创建的.当消息到达后,在目标窗口处理函数之前处理 ...

  8. 解决this web application instance has been stopped already

    重启tomcat的时候出错 Illegal access: this web application instance has been stopped already.  Could not loa ...

  9. VB.NET服务器端令客户端下载PDF文件

    后台JS调用另一个控件,通过SESSION传递sDocumentPath 控件后台代码如下     Response.Clear() '如果不清,则有可能将页面源码作为文件内容的一部分传递给用户    ...

  10. JavaScript-jQuery报TypeError $(...) is null错误(jQuery失效)解决办法

    出现这种错误一般都是jQuery的$方法被覆盖, 解决办法: 1.把$改为jQuery使用 jQuery.noConflict();//将变量$的控制权让渡给给其他插件或库 jQuery(functi ...