Common Probability Distributions

Probability Distribution

A probability distribution describes the probabilities of all the possible outcomes for a random variable.

A discrete random variable if one for which the number of possible outcomes can be counted, and for each possible outcome, there is a measurable and positive probability.

A continuous random variable is one for which the number of possible outcome is infinite, even if lower and upper bounds exist.

A cumulative distribution function (CDF) defines the probability that a random variable, X, takes on a value equal to or less than a specific value, x.

F(x)=P(X<=x)

A discrete uniform random variable is one for which the probabilities for all possible outcomes for a discrete random variable are equal.

Binomial Distribution(二项分布)

A binomial random variable may be defined as the number of "success" in a given number of trials, whereby the outcome can be either "success" or "failure". The probability of success, p, is constant for each trial, and the trails are independent.

Note: binomial distribution is a discrete distribution.

A binomial random variable for which the number of trials is 1 is called Bernoulli random variable (伯努利随即变量).

Expected value

For a given serial of n trials,, the expected number of success, or E(X), is given by the following formula:

expectedd value of X = E(X) = np

The intuition is straightforward; if we perform n trails and the probability of success on each trail is p, we expect np successes.

Variance

The variance of a binomial random variable is given by:

variance of X = np(1-p)

Tracking Error

Tracking error is the difference between the total return on a portfolio and the total return on the benchmark against which its performance is measured.

Note: The expression "tracking error" is sometimes used interchangeably with "tracking risk", which refer to the standard deviation of the differences between a portfolio's return and its benchmark return.

Continuous Uniform Distribution

The continuous uniform distribution is defined over a range that spans between some lower limit, a, and some upper limit, b, which serve as the parameters of the distribution. Outcomes can only occur between a and b, and since we are dealing with a continuous distribution, even if a < x < b, P(X=x)=0.

  • PDF (probability density function)

  • CDF (continuous distribution function)

Normal Distribution

Note: some properties of normal distribution:

  1. Skewness=0
  2. Kurtosis=3
  3. A linear combination of normally distributed random variables is also normally distributed.

Standard Normal Distribution (标准正太分布) and Z value

The standard normal distribution is a normal distribution that has been standardized so that is has a mean of zero and a standard deviation of 1.

To standardize an observation from a given normal distribution,, the z-value of the observation must be calculated. The z-value represents the number of standard deviations a given observation is from the population mean. Standardization is the process of converting an observed value for a random variable to its z-value.

z = [observation-population mean]/[standard deviation] = [x-μ]/σ

Confidence Interval(置信区间)

A confidence interval is a range of values around the expected outcome within which we expect the actual outcome to be some specified percentage of the time. A 95% confidence interval is a range that we expect the random variable to be in 95% of time. For a normal distribution, this interval is based on the expected value(sometimes called a point estimate) of the random variable and on its variability, which we measure with standard deviation.

Note: 1-confidence interval = α (which is called significance level)

For any normally distributed random variable, 68% of outcomes are within one standard deviation of the expected value (mean), and approximately 95% of the outcomes are within two standard deviations of the expected value.

Shortfall risks, Safety-First ratio

Shortfall risk is the probability that a portfolio value or return will fall below a particular(target) value or return over a given time period.

Roy's safety-first criterion states that the optimal portfolio minimizes the probability that the return of the portfolio falls below some minimum acceptable level. This minimum acceptable level is called the threshold level.

If portfolio returns area normally distributed, then Roy's safety-first criterion can be stated as:

Note that the SFR is the number of standard deviations below the mean. Thus the portfolio with the larger SFR has the lower probability of returns below the threshold return.

Lognormal distribution(对数正太分布)

The lognormal distribution is generated by the function e^x, where x is normally distributed. Since the natural logarithm, ln, of e^x is x, the logarithms of lognormally distributed random variables are normally distributed.

  • The log-normal distribution is skewed to the right
  • The log-normal distribution is bounded from below by zero that it is useful for modeling asset prices which never take negative values.

PMF(Probability Mass Function)

PMF(概率质量函数),这个函数是值到其概率的映射。

如果要处理的数据比较少,PMF很合适。但随着数据的增加,每个值的概率就会降低,而随机噪声的影响就会增大。

CDF(Cumulative Distribution Function)

CDF(累积分布函数), 这个函数是值到其在分布中百分等级的映射。

  def Cdf(t, x):
count = 0.0
for value in t:
if value <= x:
count += 1.0
prob = count / len(t)
return prob

我们可以计算任意值x的CDF, 而不仅仅是样本中出现的值。如果x比样本中最小的值还要小,那么CDF(x)就等于0.如果x比样本中的最大值还要大,那么CDF(x)就是1.

帕累托分布

See百度百科 and 维基百科

帕累托分布(Pareto distribution)是以意大利经济学家维弗雷多·帕雷托命名的。 是从大量真实世界的现象中发现的幂次定律分布。这个分布在经济学以外,也被称为布拉德福分布。

帕累托因对意大利20%的人口拥有80%的财产的观察而著名,后来被约瑟夫·朱兰和其他人概括为帕累托法则(80/20法则),后来进一步概括为帕累托分布的概念。

在帕累托分布中,如果X是一个随机变量, 则X的概率分布如下面的公式所示:

其中x是任何一个大于xmin的数,xmin是X最小的可能值(正数),k是为正的参数。帕累托分布曲线族是由两个数量参数化的:xmin和k。分布密度则为

Common Probability Distributions的更多相关文章

  1. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  2. PRML读书笔记——2 Probability Distributions

    2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...

  3. PRML读书会第二章 Probability Distributions(贝塔-二项式、狄利克雷-多项式共轭、高斯分布、指数族等)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:11:56 开始吧,先不要发言了,先讲PRML第二章Probability Dis ...

  4. Study note for Continuous Probability Distributions

    Basics of Probability Probability density function (pdf). Let X be a continuous random variable. The ...

  5. Tensorflow Probability Distributions 简介

    摘要:Tensorflow Distributions提供了两类抽象:distributions和bijectors.distributions提供了一系列具备快速.数值稳定的采样.对数概率计算以及其 ...

  6. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  7. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  8. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  9. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

随机推荐

  1. Android 四大组件之 Activity(二)

    1.综述 Activity是Android四大组件(Application Components)之一,简单来说Activity就是平常所见到的用户界面,一般情况下,一个Activity所占的窗口是满 ...

  2. Hibernate(六)一对多映射(多对一)

    一.Hinbernate中持久化类的关联关系 在数据库中,表表之间是通过外键关联的,在程序中是要转化为持久化类也就是(JAVA Bean)来实例的. 但在Hibernater中持久化的之间的映射关系, ...

  3. centos下两种方法安装git

    来自:http://blog.slogra.com/post-176.html 今天下个包需要使用git,网上找了下看到大多数只有编译安装,并且编译安装还有错,不知道他们也没有实验过,这里我来给大家介 ...

  4. STM32F429I-DISCO 和GPS的亲热接触

    第27章 GPS LCD显示教程 本期教程为大家解说GPS Global Positioning System(全球定位系统)的使用,.GPS是由美国国防部研制建立的一种具有全方位.全天候.全时段.高 ...

  5. Linux see 网卡当前流量

    linux see网卡的当前流量 sar –n DEV  1 2  命令后面1 2 意思是:每一秒钟取1次值,取2次. DEV显示网络接口信息 -n参数很有用,他有6个不同的开关:DEV | EDEV ...

  6. 发现linux shell中$0,$?,$!等的特殊用法

    记录下linux shell下的特殊用法及参数的说明 变量说明: $$ Shell本身的PID(ProcessID) $! Shell最后运行的后台Process的PID $? 最后运行的命令的结束代 ...

  7. redis阻塞bgsave与bsrewriteaof

    问题描述: redis在进程偶尔会出现2个进程redis-server \ redis-bgsave Redis 首先 fork 一个子进程, 并在该子进程里进行归并和写持久化存储设备(如硬盘)的. ...

  8. linux(red hat)下安装jenkins

    Jenkins的安装能够分为在线安装和下载软件本地安装.我这里用的是另外一种方法,将其下载后是一个应用程序直接点击安装就能够.等安装完后配置一下jdk的路径就ok啦!接下来进行具体的说明: 一.前提 ...

  9. 【laravel54】如果开启了自带的时间戳(Y-h-m H:s:m),getInsertId一定要手动加上created_at 和 updated_at字段填充

    [laravel54]如果开启了自带的时间戳(Y-h-m H:s:m),getInsertId一定要手动加上created_at 和 updated_at字段填充

  10. supervisor介绍与安装

    前言 今天同事让我帮忙安装一个叫supervisor的软件,但自己确实没接触过这个软件 自己做一下学习的记录 我首先是查询了一下supervisor的官网,初步认识一下这个软件 Supervisor是 ...