神经网络中的激活函数tanh sigmoid RELU softplus softmatx
所谓激活函数,就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。常见的激活函数包括Sigmoid、TanHyperbolic(tanh)、ReLu、 softplus以及softmax函数。这些函数有一个共同的特点那就是他们都是非线性的函数。那么我们为什么要在神经网络中引入非线性的激活函数呢?引用https://www.zhihu.com/question/29021768的解释就是:
如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。
正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。
由此可见,激活函数对神经网络的深层抽象功能有着极其重要的意义。下面分别对上述激活函数进行说明:
Sigmoid函数
Sigmoid函数的表达式为y=1/(1+ex),函数曲线如下图所示:
Sigmoid函数是传统神经网络中最常用的激活函数,一度被视为神经网络的核心所在。
从数学上来看,Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果。
从神经科学上来看,中央区酷似神经元的兴奋态,两侧区酷似神经元的抑制态,因而在神经网络学习方面,可以将重点特征推向中央区,将非重点特征推向两侧区。
TanHyperbolic(tanh)函数
TanHyperbolic(tanh)函数又称作双曲正切函数,数学表达式为y=(ex−e−x)/(ex+e−x),其函数曲线与Sigmoid函数相似,tanh函数与Sigmoid函数的函数曲线如下所示:
在具体应用中,tanh函数相比于Sigmoid函数往往更具有优越性,这主要是因为Sigmoid函数在输入处于[-1,1]之间时,函数值变化敏感,一旦接近或者超出区间就失去敏感性,处于饱和状态,影响神经网络预测的精度值。而tanh的输出和输入能够保持非线性单调上升和下降关系,符合BP网络的梯度求解,容错性好,有界,渐进于0、1,符合人脑神经饱和的规律,但比sigmoid函数延迟了饱和期。
ReLu函数和softplus函数
ReLu函数的全称为Rectified Linear Units,函数表达式为y=max(0,x),softplus函数的数学表达式为y=log(1+ex),它们的函数表达式如下:
可以看到,softplus可以看作是ReLu的平滑。根据神经科学家的相关研究,softplus和ReLu与脑神经元激活频率函数有神似的地方。也就是说,相比于早期的激活函数,softplus和ReLu更加接近脑神经元的激活模型,而神经网络正是基于脑神经科学发展而来,这两个激活函数的应用促成了神经网络研究的新浪潮。
那么softplus和ReLu相比于Sigmoid的优点在哪里呢?引用https://www.zhihu.com/question/29021768的解释就是:
第一,采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。
第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),从而无法完成深层网络的训练。
第三,Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生(以及一些人的生物解释balabala)。
如果想要了解更多的话,http://www.cnblogs.com/neopenx/p/4453161.html对softplus进行了详细的介绍,这里不再赘述。
softmax函数
我们可以看到,Sigmoid函数实际上就是把数据映射到一个(−1,1)的空间上,也就是说,Sigmoid函数如果用来分类的话,只能进行二分类,而这里的softmax函数可以看做是Sigmoid函数的一般化,可以进行多分类。softmax函数的函数表达式为:σ(z)j=eZj/∑Kk=1eZk。从公式中可以看出,就是如果某一个zj大过其他z,那这个映射的分量就逼近于1,其他就逼近于0,即用于多分类。也可以理解为将K维向量映射为另外一种K维向量。
神经网络中的激活函数tanh sigmoid RELU softplus softmatx的更多相关文章
- 神经网络中的激活函数——加入一些非线性的激活函数,整个网络中就引入了非线性部分,sigmoid 和 tanh作为激活函数的话,一定要注意一定要对 input 进行归一话,但是 ReLU 并不需要输入归一化
1 什么是激活函数? 激活函数,并不是去激活什么,而是指如何把“激活的神经元的特征”通过函数把特征保留并映射出来(保留特征,去除一些数据中是的冗余),这是神经网络能解决非线性问题关键. 目前知道的激活 ...
- TensorFlow神经网络中的激活函数
激活函数是人工神经网络的一个极其重要的特征.它决定一个神经元是否应该被激活,激活代表神经元接收的信息与给定的信息有关. 激活函数对输入信息进行非线性变换. 然后将变换后的输出信息作为输入信息传给下一层 ...
- 神经网络中的激活函数具体是什么?为什么ReLu要好过于tanh和sigmoid function?(转)
为什么引入激活函数? 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层 ...
- 浅谈深度学习中的激活函数 - The Activation Function in Deep Learning
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活 ...
- The Activation Function in Deep Learning 浅谈深度学习中的激活函数
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激 ...
- 神经网络中的Heloo,World,基于MINST数据集的LeNet
前言 最近刚开始接触机器学习,记录下目前的一些理解,以及看到的一些好文章mark一下 1.MINST数据集 MNIST 数据集来自美国国家标准与技术研究所, National Institute of ...
- 【python实现卷积神经网络】激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus)
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 激活函数Sigmoid、Tanh、ReLu、softplus、softmax
原文地址:https://www.cnblogs.com/nxf-rabbit75/p/9276412.html 激活函数: 就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端. 常见 ...
- 深度学习的激活函数 :sigmoid、tanh、ReLU 、Leaky Relu、RReLU、softsign 、softplus、GELU
深度学习的激活函数 :sigmoid.tanh.ReLU .Leaky Relu.RReLU.softsign .softplus.GELU 2019-05-06 17:56:43 wamg潇潇 阅 ...
随机推荐
- IO编程(2)-操作文件和目录
操作文件和目录 如果我们要操作文件.目录,可以在命令行下面输入操作系统提供的各种命令来完成.比如dir.cp等命令. 如果要在Python程序中执行这些目录和文件的操作怎么办?其实操作系统提供的命令只 ...
- 学习操作Mac OS 之安装工具组件
视频软件: MPlayerX 安装MySQL: 下载MySQL: https://dev.mysql.com/downloads/installer/ 设置环境变量:http://www.cnblog ...
- JS的异步
1.异步 程序中现在运行的部分和将来运行的部分之间的关系是异步编程的核心. 多数JavaScript开发者从来没有认真思考过自己程序中的异步到底是如何出现的,以及为什么会出现,也没有探索过处理异步的其 ...
- 谷歌发布 Android 8.1 首个开发者预览版,优化内存效率
今晨,谷歌推出了 Android 8.1 首个开发者预览版,此次升级涵盖了针对多个功能的提升优化,其中包含对 Android Go (设备运行内存小于等于 1 GB)和加速设备上对机器学习的全新神经网 ...
- Java类编译、加载、和执行机制
Java类编译.加载.和执行机制 标签: java 类加载 类编译 类执行 机制 0.前言 个人认为,对于JVM的理解,主要是两大方面内容: Java类的编译.加载和执行. JVM的内存管理和垃圾回收 ...
- opencv 启动摄像头 C++
http://blog.csdn.net/thefutureisour/article/details/7530177 在网上看了许多关于OpenCV启动摄像头的资料,但是,都是基于C语言的,代码又臭 ...
- AES-NI指令集
对于intel的AES-NI新指令集,需要i5处理器及以上的相关硬件支持.在编译时,可能会出现 /usr/lib/gcc/x86_64-linux-gnu/4.8/include/wmmintrin. ...
- 计数排序与桶排序(bucket sort)
Bucket Sort is a sorting method that subdivides the given data into various buckets depending on cer ...
- HDU 3943 数位dp+二分
K-th Nya Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others) ...
- 【Asp.net入门3-05】处理JSON数据