所谓激活函数,就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。常见的激活函数包括Sigmoid、TanHyperbolic(tanh)、ReLu、 softplus以及softmax函数。这些函数有一个共同的特点那就是他们都是非线性的函数。那么我们为什么要在神经网络中引入非线性的激活函数呢?引用https://www.zhihu.com/question/29021768的解释就是:

如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。 
正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。

  由此可见,激活函数对神经网络的深层抽象功能有着极其重要的意义。下面分别对上述激活函数进行说明:

Sigmoid函数

  Sigmoid函数的表达式为y=1/(1+ex),函数曲线如下图所示: 
   
         
   
  Sigmoid函数是传统神经网络中最常用的激活函数,一度被视为神经网络的核心所在。 
  从数学上来看,Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果。 
  从神经科学上来看,中央区酷似神经元的兴奋态,两侧区酷似神经元的抑制态,因而在神经网络学习方面,可以将重点特征推向中央区,将非重点特征推向两侧区。

TanHyperbolic(tanh)函数

  TanHyperbolic(tanh)函数又称作双曲正切函数,数学表达式为y=(ex−e−x)/(ex+e−x),其函数曲线与Sigmoid函数相似,tanh函数与Sigmoid函数的函数曲线如下所示: 
         
   
  在具体应用中,tanh函数相比于Sigmoid函数往往更具有优越性,这主要是因为Sigmoid函数在输入处于[-1,1]之间时,函数值变化敏感,一旦接近或者超出区间就失去敏感性,处于饱和状态,影响神经网络预测的精度值。而tanh的输出和输入能够保持非线性单调上升和下降关系,符合BP网络的梯度求解,容错性好,有界,渐进于0、1,符合人脑神经饱和的规律,但比sigmoid函数延迟了饱和期。

ReLu函数和softplus函数

  ReLu函数的全称为Rectified Linear Units,函数表达式为y=max(0,x),softplus函数的数学表达式为y=log(1+ex),它们的函数表达式如下: 
   
  可以看到,softplus可以看作是ReLu的平滑。根据神经科学家的相关研究,softplus和ReLu与脑神经元激活频率函数有神似的地方。也就是说,相比于早期的激活函数,softplus和ReLu更加接近脑神经元的激活模型,而神经网络正是基于脑神经科学发展而来,这两个激活函数的应用促成了神经网络研究的新浪潮。 
  那么softplus和ReLu相比于Sigmoid的优点在哪里呢?引用https://www.zhihu.com/question/29021768的解释就是:

第一,采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。 
第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),从而无法完成深层网络的训练。 
第三,Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生(以及一些人的生物解释balabala)。

如果想要了解更多的话,http://www.cnblogs.com/neopenx/p/4453161.html对softplus进行了详细的介绍,这里不再赘述。

softmax函数

  我们可以看到,Sigmoid函数实际上就是把数据映射到一个(−1,1)的空间上,也就是说,Sigmoid函数如果用来分类的话,只能进行二分类,而这里的softmax函数可以看做是Sigmoid函数的一般化,可以进行多分类。softmax函数的函数表达式为:σ(z)j=eZj/∑Kk=1eZk。从公式中可以看出,就是如果某一个zj大过其他z,那这个映射的分量就逼近于1,其他就逼近于0,即用于多分类。也可以理解为将K维向量映射为另外一种K维向量。

神经网络中的激活函数tanh sigmoid RELU softplus softmatx的更多相关文章

  1. 神经网络中的激活函数——加入一些非线性的激活函数,整个网络中就引入了非线性部分,sigmoid 和 tanh作为激活函数的话,一定要注意一定要对 input 进行归一话,但是 ReLU 并不需要输入归一化

    1 什么是激活函数? 激活函数,并不是去激活什么,而是指如何把“激活的神经元的特征”通过函数把特征保留并映射出来(保留特征,去除一些数据中是的冗余),这是神经网络能解决非线性问题关键. 目前知道的激活 ...

  2. TensorFlow神经网络中的激活函数

    激活函数是人工神经网络的一个极其重要的特征.它决定一个神经元是否应该被激活,激活代表神经元接收的信息与给定的信息有关. 激活函数对输入信息进行非线性变换. 然后将变换后的输出信息作为输入信息传给下一层 ...

  3. 神经网络中的激活函数具体是什么?为什么ReLu要好过于tanh和sigmoid function?(转)

    为什么引入激活函数? 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层 ...

  4. 浅谈深度学习中的激活函数 - The Activation Function in Deep Learning

    原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活 ...

  5. The Activation Function in Deep Learning 浅谈深度学习中的激活函数

    原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激 ...

  6. 神经网络中的Heloo,World,基于MINST数据集的LeNet

    前言 最近刚开始接触机器学习,记录下目前的一些理解,以及看到的一些好文章mark一下 1.MINST数据集 MNIST 数据集来自美国国家标准与技术研究所, National Institute of ...

  7. 【python实现卷积神经网络】激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus)

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  8. 激活函数Sigmoid、Tanh、ReLu、softplus、softmax

    原文地址:https://www.cnblogs.com/nxf-rabbit75/p/9276412.html 激活函数: 就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端. 常见 ...

  9. 深度学习的激活函数 :sigmoid、tanh、ReLU 、Leaky Relu、RReLU、softsign 、softplus、GELU

    深度学习的激活函数  :sigmoid.tanh.ReLU .Leaky Relu.RReLU.softsign .softplus.GELU 2019-05-06 17:56:43 wamg潇潇 阅 ...

随机推荐

  1. Activity的setResult方法

    Activity的setResult方法http://blog.csdn.net/dinglin_87/article/details/8970144 调用setResult()方法必须在finish ...

  2. (转)log4j(六)——log4j.properties试过过程详解

    一:测试环境与log4j(一)——为什么要使用log4j?一样,这里不再重述 参考:https://www.cnblogs.com/ywlaker/p/6124067.html log4j基本用法 首 ...

  3. easyui datebox 扩展 只显示年月

    http://blog.csdn.net/zhaobao110/article/details/47755445 一个日期控件只显示年月是很正常的事情.可是easyui datebox 不支持这种格式 ...

  4. Activiti工作流的应用示例

    1.新建流程模型 模型管理->模型工作区 点击"创建"后会立即跳转到"流程在线设计器"页面,请参考下一节 2.在线流程设计器 模型管理->模型工作区 ...

  5. Qt 状态栏设置

    版权声明 该文章原创于Qter开源社区(www.qter.org),作者yafeilinux,转载请注明出处!     导语 在程序主窗口QMainWindow中,主要包含菜单栏,工具栏,中心部件和状 ...

  6. Django分别使用Memcached和Redis作为缓存的配置(Linux环境)

    1 使用memcached 1.1 安装memcached 安装(Linux) sudo apt install memcached 启动 #方式一: service memcached start ...

  7. 最新的IDEA激活方式

    IntelliJ IDEA2017.3 激活 转自:http://blog.csdn.net/zx110503/article/details/78734428 最新的IDEA激活方式 使用网上传统的 ...

  8. MySQL学习(一)——Java连接MySql数据库

    MySQL学习(一)——Java连接MySql数据库 API详解: 获得语句执行 String sql = "Insert into category(cid, cname) values( ...

  9. Http 学习笔记(一)

    介绍 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的传送协议.. ...

  10. 【翻译】Voidbox: Docker on YARN

    原文链接:Voidbox – Docker on YARN 读了此文,收获良多,翻译之,方便以后查看~ 文章介绍了Hulu北京大数据团队开发的Docker On YARN实现:Voidbox,一种基于 ...