本文主要参考OpenCV人脸识别教程:http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html

1、OpenCV 从2.4开始支持3个新的人脸识别算法。

    1. Eigenfaces 极值特征脸 createEigenFaceRecognizer()
    2. Fisherfaces createFisherFaceRecognizer()
    3. Local Binary Patterns Histograms局部二值直方图 createLBPHFaceRecognizer()

2、为了使用这三种算法,我们首先需要准备人脸训练样本,本文采用AT&T Facedatabase(点击下载)提供的人脸训练样本,该样本包括40个人,每人10张照片。照片在不同时间、不同光照、不同表情(睁眼闭眼、笑或者不笑)、不同人脸细节(戴眼镜或者不戴眼镜)下采集。所有的图像都在一个黑暗均匀的背景下,正面竖直人脸(有些有轻微旋转)。图像格式为pgm,图像大小为92*112,我们可以用gimp打开该格式的图像。

     解压AT&T人脸数据库后,我们把目录att_faces拷贝到solution文件目录。在att_faces目录中,有s1,s2,...s40,共40个子目录,每个子目录中有1.pgm...10.pgm,10个文件,每个子目录对应一个人,子目录中的每副照片,对应一个人的各种人脸表情。比如s1中存放的10张人脸样本如下所示:

      下面我们我们创建一个txt文件facerec_at.txt,格式如下,每一行包括两个字段,中间用“;”分开,第一个字段表示样本图片的路径文件名,第二个参数是一个整数索引,表示第几个人,例如第二个参数都为0,则表示第一个人,后面依次类推:

../att_faces/s13/2.pgm;12
../att_faces/s13/7.pgm;12
../att_faces/s13/6.pgm;12
../att_faces/s13/9.pgm;12
../att_faces/s13/5.pgm;12
../att_faces/s13/3.pgm;12
../att_faces/s13/4.pgm;12
../att_faces/s13/10.pgm;12
../att_faces/s13/8.pgm;12
../att_faces/s13/1.pgm;12
../att_faces/s17/2.pgm;16
../att_faces/s17/7.pgm;16

...

../att_faces/s38/10.pgm;37
../att_faces/s38/8.pgm;37
../att_faces/s38/1.pgm;37

3. Eigenfaces算法描述:

      二维灰度图像p*q大小,是一个m=pq维的向量空间,一个100*100像素大小的图像就是10000维的图像空间。我们可以通过主成分分析算法(PCA)来对m维的图像向量进行降维操作。OpenCV中PCA算法细节,可以参考:http://www.cnblogs.com/mikewolf2002/p/3432243.html,通过PCA算法,我们可以得到k个特征脸,k就是我们选择降到的维数。

算法描述Algorithmic Description

  表示一个随机特征,其中 .

  1. 计算均值向量

  1. 计算协方差矩阵 S

  1. 计算 的特征值    和对应的特征向量  
  1. 对特征值进行递减排序,特征向量和它顺序一致. k个主成分也就是k个最大的特征值对应的特征向量。

x的K个主成份:

其中  .

PCA基的重构:

其中 .

然后特征脸通过下面的方式进行人脸识别:

  1. 把所有的训练数据投影到PCA子空间
  2. 把待识别图像投影到PCA子空间
  3. 找到训练数据投影后的向量和待识别图像投影后的向量最近的那个。

4. 程序开始后,我们把样本图像和索引标签读到两个vector变量中。

    // 得到txt文件的名字
    string fn_csv = string("facerec_at_t.txt");
    // 定义一个Mat格式的vector用来保存图像,int格式的vector表示图像索引标签
    vector<Mat> images;
    vector<int> labels;
    //读入图像文件和索引标签
    try {
        read_csv(fn_csv, images, labels);
        } catch (cv::Exception& e)
        {
            cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
            exit(1);
        }
    我们选择images中的最后一副图片,作为检测的图像,并把它从images中移除。

Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
images.pop_back();
labels.pop_back();

通过下面的代码,我们输入待检测的图像,返回结果是对应人的索引标签,我们输入图像是第37个人,从结果看是对的。

    //创建特征脸算法模型,并通过样本训练数据
    Ptr<FaceRecognizer> model = createEigenFaceRecognizer();
    model->train(images, labels);

    //通过predict输入待检测的图像,返回结果是索引标签
    int predictedLabel = model->predict(testSample);
    string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
    cout << result_message << endl;

5. 通过下面的代码,我们可以求得特征值和特征向量值,并把特征向量显示为特征脸。

// 特征值和特征向量
Mat eigenvalues = model->getMat("eigenvalues");
// And we can do the same to display the Eigenvectors (read Eigenfaces):
Mat W = model->getMat("eigenvectors");
//特征值列数是1,行数是特征值的数量399
//特征向量10304*399,每一列都是一个特征向量
//每一个特征值对应一个特征向量
printf("特征值数量 :%d\n", eigenvalues.rows);
printf("特征向量维数 :%d\n",W.rows);
//显示10个特征向量
for (int i = 0; i < min(10, W.cols); i++)
    {
    string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
    cout << msg << endl;
   // 得到第i个特征向量
    Mat ev = W.col(i).clone();
    // 把特征向量归一化到0-255,便于显示
    Mat grayscale = toGrayscale(ev.reshape(1, height));
    // 用Jet colormap显示灰度图.
    imshow(format("gray image%d", i), grayscale);
    Mat cgrayscale;
    applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
    imshow(format("%d", i), cgrayscale);
    }

我们总共显示了10个特征向量(特征脸),第一个特征脸的灰度图和color map图如下:

程序代码:工程FirstOpenCV31

 

 

OpenCV学习(36) 人脸识别(1)的更多相关文章

  1. OpenCV学习(38) 人脸识别(3)

                前面我们学习了基于特征脸的人脸识别,现在我们学习一下基于Fisher脸的人脸识别,Fisher人脸识别基于LDA(线性判别算法)算法,算法的详细介绍可以参考下面两篇教程内容: ...

  2. OpenCV学习(37) 人脸识别(2)

          在前面一篇教程中,我们学习了OpenCV中基于特征脸的人脸识别的代码实现,我们通过代码 Ptr<FaceRecognizer> model = createEigenFaceR ...

  3. OpenCV学习(40) 人脸识别(4)

    在人脸识别模式类中,还实现了一种基于LBP直方图的人脸识别方法.LBP图的原理参照:http://www.cnblogs.com/mikewolf2002/p/3438698.html       在 ...

  4. 【从零学习openCV】IOS7人脸识别实战

    前言 接着上篇<IOS7下的人脸检測>,我们顺藤摸瓜的学习怎样在IOS7下用openCV的进行人脸识别,实际上非常easy,因为人脸检測部分已经完毕,剩下的无非调用openCV的方法对採集 ...

  5. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  6. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  7. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【二】人脸预处理

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  8. 基于深度学习的人脸识别系统系列(Caffe+OpenCV+Dlib)——【四】使用CUBLAS加速计算人脸向量的余弦距离

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  9. 基于Opencv快速实现人脸识别(完整版)

    无耻收藏网页链接: 基于OpenCV快速实现人脸识别:https://blog.csdn.net/beyond9305/article/details/92844258 基于Opencv快速实现人脸识 ...

随机推荐

  1. java对对象排序

    一.前言 有时我们需要对类按照类中的某一个属性(或者多个属性)来对类的对象进行排序,有两种方法可以实现,一种方法是类实现Comparable<T>接口,然后调用Collections.so ...

  2. (转)看懂UML类图

    转自:http://design-patterns.readthedocs.io/zh_CN/latest/read_uml.html 这里不会将UML的各种元素都提到,我只想讲讲类图中各个类之间的关 ...

  3. IDEA导入eclipse项目并部署运行完整步骤(转发)

    首先说明一下:idea里的project相当于eclipse里的workspace,而idea里的modules相当于eclipse里的project 1.File-->Import Proje ...

  4. iOS系统中导航栏的转场解决方案与最佳实践

    背景 目前,开源社区和业界内已经存在一些 iOS 导航栏转场的解决方案,但对于历史包袱沉重的美团 App 而言,这些解决方案并不完美.有的方案不能满足复杂的页面跳转场景,有的方案迁移成本较大,为此我们 ...

  5. JAVAEE——SSH项目实战03:新增客户、数据字典、文件上传和修改客户

    作者: kent鹏 转载请注明出处: http://www.cnblogs.com/xieyupeng/p/7145599.html 一.新增客户 1.数据字典  用于枚举项目中有限个数的字典项 (1 ...

  6. C# 操作 access 数据库

    随笔: (1)   命名空间 using System.Data.OleDb; (2)   连接字符串 private staticstring connStr = @"Provider= ...

  7. ?P<username>\w+

  8. 【10.9校内练习赛】【搜索】【2-sat】【树链剖分】【A_star k短路】【差分约束+判负环】

    在洛谷上复制的题目! P3154 [CQOI2009]循环赛 题目描述 n队伍比赛,每两支队伍比赛一次,平1胜3负0. 给出队伍的最终得分,求多少种可能的分数表. 输入输出格式 输入格式: 第一行包含 ...

  9. bzoj 3997 Dilworth定理

    看到这道题感觉像是网络流,如果没有权值,可以用DAG最小路径覆盖,有权值,感觉可以求一个上下界最小可行流,但内存卡了....时间估计也悬. 正解要用到一些数学知识,这里梳理一下: 定义: 偏序关系: ...

  10. noip 1995 灯的排列问题 排列组合 DFS

    题目描述 设在一排上有N个格子(N≤20),若在格子中放置有不同颜色的灯,每种灯的个数记为N1,N2,……Nk(k表示不同颜色灯的个数). 放灯时要遵守下列规则: ①同一种颜色的灯不能分开: ②不同颜 ...