SPOJ - NSUBSTR

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PII pair<int, int>
#define PLI pair<LL, int>
#define PDD pair<double,double>
#define ull unsigned long long
using namespace std; const int N = + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-; int n, ans[N];
char s[N]; struct SuffixAutomaton {
int last, cur, cnt, ch[N<<][], id[N<<], fa[N<<], dis[N<<], sz[N<<], c[N];
SuffixAutomaton() {cur = cnt = ;}
void init() {
for(int i = ; i <= cnt; i++) {
memset(ch[i], , sizeof(ch[i]));
sz[i] = c[i] = dis[i] = fa[i] = ;
}
cur = cnt = ;
}
void extend(int c, int id) {
last = cur; cur = ++cnt;
int p = last; dis[cur] = id;
for(; p && !ch[p][c]; p = fa[p]) ch[p][c] = cur;
if(!p) fa[cur] = ;
else {
int q = ch[p][c];
if(dis[q] == dis[p]+) fa[cur] = q;
else {
int nt = ++cnt; dis[nt] = dis[p]+;
memcpy(ch[nt], ch[q], sizeof(ch[q]));
fa[nt] = fa[q]; fa[q] = fa[cur] = nt;
for(; ch[p][c]==q; p=fa[p]) ch[p][c] = nt;
}
}
sz[cur] = ;
}
void getSize(int n) {
for(int i = ; i <= cnt; i++) c[dis[i]]++;
for(int i = ; i <= n; i++) c[i] += c[i-];
for(int i = cnt; i >= ; i--) id[c[dis[i]]--] = i;
for(int i = cnt; i >= ; i--) {
int p = id[i];
sz[fa[p]] += sz[p];
}
}
void solve() {
for(int i = ; i <= cnt; i++) {
ans[dis[i]] = max(ans[dis[i]], sz[i]);
}
for(int i = n-; i >= ; i--) ans[i] = max(ans[i], ans[i+]);
for(int i = ; i <= n; i++) printf("%d\n", ans[i]);
}
} sam; int main() {
scanf("%s", s + );
n = strlen(s + );
for(int i = ; i <= n; i++)
sam.extend(s[i]-'a', i), ans[i] = ;
sam.getSize(n);
sam.solve();
return ;
} /*
*/

SPOJ - NSUBSTR 后缀自动机板子的更多相关文章

  1. SPOJ NSUBSTR (后缀自动机)

    SPOJ NSUBSTR Problem : 给一个长度为n的字符串,要求分别输出长度为1~n的子串的最多出现次数. Solution :首先对字符串建立后缀自动机,在根据fail指针建立出后缀树,对 ...

  2. 长度为x的本质不同的串的出现次数 SPOJ - NSUBSTR 后缀自动机简单应用

    题意: 长度为x的本质不同的串的出现次数 题解: 先处理出每一个节点所对应的子串出现的次数 然后取max就好了 #include <set> #include <map> #i ...

  3. SPOJ LCS 后缀自动机

    用后缀自动机求两个长串的最长公共子串,效果拔群.多样例的时候memset要去掉. 解题思路就是跟CLJ的一模一样啦. #pragma warning(disable:4996) #include< ...

  4. SPOJ - LCS 后缀自动机入门

    LCS - Longest Common Substring A string is finite sequence of characters over a non-empty finite set ...

  5. SPOJ LCS 后缀自动机找最大公共子串

    这里用第一个字符串构建完成后缀自动机以后 不断用第二个字符串从左往右沿着后缀自动机往前走,如能找到,那么当前匹配配数加1 如果找不到,那么就不断沿着后缀树不断往前找到所能匹配到当前字符的最大长度,然后 ...

  6. SPOJ 7258 (后缀自动机)

    转载:http://hzwer.com/4492.html 给一个长度不超过90000的串S,每次询问它的所有不同子串中,字典序第K小的,询问不超过500个. 搞出后缀自动机 dp处理出每个点往下走能 ...

  7. 多个串的最长公共子串 SPOJ - LCS2 后缀自动机

    题意: 求多个串的最长公共子串 这里用的是O(n)的后缀自动机写法 我后缀数组的专题有nlog(n)写法的 题解: 对于其中的一个串建立后缀自动机 然后对于后缀自动机上面的每一个节点求出每一个节点最长 ...

  8. Spoj REPEATS 后缀自动机+set

    REPEATS - Repeats 链接:http://www.spoj.com/problems/REPEATS 题意:求S串中某个子串连续循环次数最多的次数. 想法: 从暴力开始,枚举所有串,求出 ...

  9. SPOJ - SUBLEX 后缀自动机

    SPOJ - SUBLEX 思路:求第k大字串,求出sam上每个节点开始能识别多少字串,然后从起点开始跑就好啦. #include<bits/stdc++.h> #define LL lo ...

随机推荐

  1. centos7.2云主机安装桌面

    yum groups install "X Window System" yum groupinstall "GNOME Desktop" systemctl  ...

  2. 谈谈动态地加载Jquery库文件的方法

    有时候,我们可能不会在网页中<script src="jquery.min.js" 来加载 Jquery 库,可能在用户点击某个按钮后,才去加载 Jquery 库. 好处不用 ...

  3. ubuntu 开机自动挂在windows下的分区

    最近装了Ubuntu14.04 + windows7 的双系统,启动Ubuntu的时候,不会自动挂载win7的分区,只有我点击相应的硬盘符号时才会挂载/media下面.本着折腾到底的原则,在网上搜了搜 ...

  4. 基本控件文档-UIScrollView

    CHENYILONG                                      基本控件文档-UIScrollView Fullscreen   基本使用作用UIScrollView可 ...

  5. HDU 1171 Big Event in HDU(01背包)

    题目链接 题意:给出n个物品的价值v,每个物品有m个,设总价值为sum,求a,b.a+b=sum,且a尽可能接近b,a>=b. 题解:01背包. #include <bits/stdc++ ...

  6. Java 8 Lambda表达式,让你的代码更简洁

    Lambda表达式是Java 8一个非常重要的新特性.它像方法一样,利用很简单的语法来定义参数列表和方法体.目前Lambda表达式已经成为高级编程语言的标配,像Python,Swift等都已经支持La ...

  7. [转]编译防火墙——C++的Pimpl惯用法解析

    impl(pointer to implementation, 指向实现的指针)是一种常用的,用来对“类的接口与实现”进行解耦的方法.这个技巧可以避免在头文件中暴露私有细节(见下图1),因此是促进AP ...

  8. 排序算法的java实现

    冒泡.选择就不写了.很常见 一:插入排序: /** * 插入排序 */ public class P4_3 { static void insertSort(int[] a){ int j,t; /* ...

  9. bind系统调用

    /* * Bind a name to a socket. Nothing much to do here since it's * the protocol's responsibility to ...

  10. Linux Module框架【转】

    转自:http://www.cnblogs.com/LittleHann/p/4558719.html catalog 1. 概述 2. 使用模块 3. 插入和删除模块 4. 自动化与热插拔 5. 版 ...