思路:利用训练好的palm.xml和fist.xml文件,用OpenCV的CascadeClassifier对每一帧图像检测palm和fist,之后对多帧中检测到的palm和fist进行聚类分组,满足分组条件的区域为最终检测结果。

代码:

 #include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp" #include <iostream>
#include <stdio.h> using namespace std;
using namespace cv; /** Function Headers */
void detectAndDisplay( Mat frame );
void RestoreVectors(vector<vector<Rect>>& vecs_bank, vector<Rect>& vecAll); /** Global variables */
String palm_cascade_name = "palm.xml";
String fist_cascade_name = "fist.xml";
CascadeClassifier palm_cascade;
CascadeClassifier fist_cascade;
string window_name = "Capture - Palm and fist detection"; /** @function main */
int main( int argc, const char** argv )
{
CvCapture* capture;
Mat frame; //-- 1. Load the cascades
if( !palm_cascade.load( palm_cascade_name ) ){ printf("--(!)Error loading\n"); return -; };
if( !fist_cascade.load( fist_cascade_name ) ){ printf("--(!)Error loading\n"); return -; }; //-- 2. Read the video stream
capture = cvCaptureFromCAM( - );
if( capture )
{
while( true )
{
frame = cvQueryFrame( capture ); //-- 3. Apply the classifier to the frame
if( !frame.empty() )
{ detectAndDisplay( frame ); }
else
{ printf(" --(!) No captured frame -- Break!"); break; } int c = waitKey();
if( (char)c == 'q' || (char)c == 'Q' || == c) { break; }
}
} cvReleaseCapture(&capture);
return ;
} /** @function detectAndDisplay */
void detectAndDisplay( Mat frame )
{
std::vector<Rect> faces;
std::vector<Rect> palms;
std::vector<Rect> fists;
static vector<vector<Rect>> palms_bank;
static vector<vector<Rect>> fists_bank;
const int MAX_NUM = ;
Mat frame_gray; cvtColor( frame, frame_gray, CV_BGR2GRAY );
equalizeHist( frame_gray, frame_gray ); //-- Palm detection
palm_cascade.detectMultiScale( frame_gray, palms, 1.1, , |CV_HAAR_SCALE_IMAGE, Size(, ) );
palms_bank.push_back(palms);
if(palms_bank.size() > MAX_NUM)
palms_bank.erase(palms_bank.begin()); vector<Rect> palmAll;
RestoreVectors(palms_bank, palmAll);
groupRectangles(palmAll, ); for( size_t j = ; j < palmAll.size(); j++ )
{
rectangle(frame, palmAll[j], Scalar(,,), );
} //-- Fist detection
fist_cascade.detectMultiScale( frame_gray, fists, 1.1, , |CV_HAAR_SCALE_IMAGE, Size(, ) );
fists_bank.push_back(fists);
if(fists_bank.size() > MAX_NUM)
fists_bank.erase(fists_bank.begin()); vector<Rect> fistAll;
RestoreVectors(fists_bank, fistAll);
groupRectangles(fistAll, ); for( size_t j = ; j < fistAll.size(); j++ )
{
rectangle(frame, fistAll[j], Scalar(,,), );
} //-- Show what you got
imshow( window_name, frame );
} void RestoreVectors(vector<vector<Rect>>& vecs_bank, vector<Rect>& vecAll)
{
for(size_t i = ; i < vecs_bank.size(); i++){
vecAll.insert(vecAll.end(), vecs_bank[i].begin(), vecs_bank[i].end());
}
}

参考:

[1] groupRectangles的说明文档

[2] palm.xml和fist.xml的下载地址

[3] 人脸和眼睛检测的opencv示例代码

groupRectangles

Groups the object candidate rectangles.

C++: void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps=0.2)
C++: void groupRectangles(vector<Rect>& rectList, vector<int>& weights, intgroupThreshold, double eps=0.2)
Python: cv2.groupRectangles(rectList, groupThreshold[, eps]) → rectList, weights
Parameters:
  • rectList – Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.)
  • groupThreshold – Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
  • eps – Relative difference between sides of the rectangles to merge them into a group.

The function is a wrapper for the generic function partition() . It clusters all the input rectangles using the rectangle equivalence criteria that combines rectangles with similar sizes and similar locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If  , all the rectangles are put in one cluster. Then, the small clusters containing less than or equal to groupThreshold rectangles are rejected. In each other cluster, the average rectangle is computed and put into the output rectangle list.

原文:http://blog.csdn.net/lichengyu/article/details/38544189

利用OpenCV检测手掌(palm)和拳头(fist)的更多相关文章

  1. 利用OpenCV检测图像中的长方形画布或纸张并提取图像内容

    基于知乎上的一个答案.问题如下: 也就是在一张照片里,已知有个长方形的物体,但是经过了透视投影,已经不再是规则的长方形,那么如何提取这个图形里的内容呢?这是个很常见的场景,比如在博物馆里看到一幅很喜欢 ...

  2. 如何利用OpenCV自带的级联分类器训练程序训练分类器

    介绍 使用级联分类器工作包括两个阶段:训练和检测. 检测部分在OpenCVobjdetect 模块的文档中有介绍,在那个文档中给出了一些级联分类器的基本介绍.当前的指南描述了如何训练分类器:准备训练数 ...

  3. 利用opencv作透明重叠人群密度热度图

    在作热度图的时候我们经常需要将热度图调整透明度后叠加在原图上达到更好的展示效果.比如检测人气密度的热度图: (来自sensetime) 一般作图的时候会第一时间想到matplotlib,因为可以很方便 ...

  4. xss利用和检测平台

    xssing 是安全研究者Yaseng发起的一个基于 php+mysql的 网站 xss 利用与检测开源项目,可以对你的产品进行黑盒xss安全测试,可以兼容获取各种浏览器客户端的网站url,cooki ...

  5. 用 Python 和 OpenCV 检测图片上的条形码

      用 Python 和 OpenCV 检测图片上的的条形码 这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现.我所实现的算法本质上基于StackOverflow 上的这个问 ...

  6. #利用openCV裁脸

    #利用openCV裁脸import cv2 def draw_rects(img, rects): for x, y, w, h in rects: cv2.rectangle(img, (x, y) ...

  7. 利用OpenCV给图像添加中文标注

    利用OpenCV给图像添加中文标注 : 参考:http://blog.sina.com.cn/s/blog_6bbd2dd101012dbh.html  和https://blog.csdn.net/ ...

  8. 用 Python 和 OpenCV 检测图片上的条形码(转载)

    原文地址:http://python.jobbole.com/80448/ 假设我们要检测下图中的条形码: # load the image and convert it to grayscale 1 ...

  9. 利用WMI检测电脑硬件信息,没办法显示cpu的信息

    但你要给某些系统或软件加密时,需要了解到服务器的硬件信息时,系统和软件会利用WMI检测硬件信息, 而有时我们会遇到检测不到CPU的型号信息,如图 此时的解决方法: 1.确定“服务”里启动了WMI 2. ...

随机推荐

  1. 曲演杂坛--HASH的一点理解

    HASH,百度百科上做如下定义: Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列 ...

  2. SignalR 设计理念(二)

    SignalR 设计理念(二) 实现客户端和服务器端的实时通讯. 前言: 客户端方法忽略大小写,主要原因基于是URL对大小写不敏感的问题,开发者之间为了更好的协同开发,定下的开发者协议. 问题阐述 客 ...

  3. 隐式等待-----Selenium快速入门(九)

    有时候,网页未加载完成,或加载失败,但是我们后续的代码就已经开始查找页面上的元素了,这通常将导致查找元素失败.在本系列Selenium窗口切换-----Selenium快速入门(六)中,我们就已经出现 ...

  4. vue+webpack学习连接地址

    vue.js+webpack模块管理及组件开发 http://geocld.github.io/2016/03/14/vuejs_webpack/ 30分钟手把手教你学webpack实战 https: ...

  5. RTOS双向链表数据结构

    在学习RTOS操作系统时,在任务优先级设置时用到了双向链表,说实话数据结构的东西只是停留在大学上课阶段,并未实践过,在操作系统中看得云里雾里,遂将其单独拿来了进行了一下思考,经过一个上午的摸索逐渐领会 ...

  6. ElasticSearch的基本认识和基本操作

    1.1.  ElasticSearch(简称ES) ES即为了解决原生Lucene使用的不足,优化Lucene的调用方式,并实现了高可用的分布式集群的搜索方案,其第一个版本于2010年2月出现在Git ...

  7. OpenVswitch mirror 镜像功能

    # 从int-br-eth1进入的包镜像一份给dummy0 # 现象:dummy0 可以抓到 int-br-eth1 进入的包 modprobe dummy ip link set up dummy0 ...

  8. jzoj5805

    #include<bits/stdc++.h> using namespace std; int x,n,pp,ct[10000]; long double f[210][(1<&l ...

  9. 2018 Multi-University Training Contest 3

    claris出题,orzzzzzz.前一天晚上说是贪心专场,喵喵喵??? 之前clsris说难题扔多校了,据说07,13是女生赛撤下来的题,喵喵喵??? A.Ascending Rating 题目传送 ...

  10. Volley源码解析

    说点题外话,将近三个半月没有写博客了,年初换工作,在新的公司,上班第三天开始干活,花了二十来天弄了一个项目,上线后,接着又迭代了几个版本,不知不觉,试用期过完,才稍微有几天闲时.在年初的时候,就一直在 ...