Mahout实战---运行第一个推荐引擎
创建输入
创建intro.csv文件,内容如下
1,101,5.0
1,102,3.0
1,103,2.5 2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0 3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0 4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0 5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0
创建推荐程序
由于项目在eclipse下,所以先获取项目额根目录String projectDir = System.getProperty("user.dir");
package com.xxx; import java.io.File;
import java.io.IOException;
import java.util.List; import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity; /**
* 简单的使用皮尔逊相关系数进行推荐
* @author
*
*/
public class RecommenderIntro {
public static void main(String[] args) throws IOException, TasteException {
String projectDir = System.getProperty("user.dir");
DataModel model = new FileDataModel(new File(projectDir + "/src/main/intro.csv"));
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model); Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);
List<RecommendedItem> recommendedItems = recommender.recommend(1, 1);
for (RecommendedItem recommendedItem : recommendedItems) {
System.out.println(recommendedItem);
}
}
}
推荐程序的步骤是:1,输入user-item矩阵数据 2,选择合适的相似度计算方法(程序中使用的是皮尔逊相关系数)3,构造N最近邻 4,根据邻居产生推荐结果
对应到mahout程序就是上述代码中写的。这个很简单,没毛病,下面是运行结果
Mahout实战---运行第一个推荐引擎的更多相关文章
- Mahout实战---评估推荐程序
推荐程序的一般评测标准有MAE(平均绝对误差),Precision(查准率),recall(查全率) 针对Mahout实战---运行第一个推荐引擎 的推荐程序,将使用上面三个标准分别测量 MAE(平均 ...
- 《mahout实战》
<mahout实战> 基本信息 原书名:Mahout in action 作者: (美)Sean Owen Robin Anil Ted Dunning Ellen Fr ...
- [转] 基于 Apache Mahout 构建社会化推荐引擎
来源:http://www.ibm.com/developerworks/cn/java/j-lo-mahout/index.html 推荐引擎简介 推荐引擎利用特殊的信息过滤(IF,Informat ...
- 基于 Apache Mahout 构建社会化推荐引擎
基于 Apache Mahout 构建社会化推荐引擎 http://www.ibm.com/developerworks/cn/views/java/libraryview.jsp 推荐引擎利用特殊的 ...
- 机器学习 101 Mahout 简介 建立一个推荐引擎 使用 Mahout 实现集群 使用 Mahout 实现内容分类 结束语 下载资源
机器学习 101 Mahout 简介 建立一个推荐引擎 使用 Mahout 实现集群 使用 Mahout 实现内容分类 结束语 下载资源 相关主题 在信息时代,公司和个人的成功越来越依赖于迅速 ...
- JVM调优(这里主要是针对优化基于分布式Mahout的推荐引擎)
优化推荐系统的JVM关键参数 -Xmx 设定Java允许使用的最大堆空间.例如-Xmx512m表示堆空间上限为512MB -server 现代JVM有两个重要标志:-client和-server,分别 ...
- 转】用Mahout构建职位推荐引擎
原博文出自于: http://blog.fens.me/hadoop-mahout-recommend-job/ 感谢! 用Mahout构建职位推荐引擎 Hadoop家族系列文章,主要介绍Hadoop ...
- 从源代码剖析Mahout推荐引擎
转载自:http://blog.fens.me/mahout-recommend-engine/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pi ...
- 转】从源代码剖析Mahout推荐引擎
原博文出自于: http://blog.fens.me/mahout-recommend-engine/ 感谢! 从源代码剖析Mahout推荐引擎 Hadoop家族系列文章,主要介绍Hadoop家族产 ...
随机推荐
- springmvc 孔浩
modelAttribute属性指定该form绑定的是哪个Model,当指定了对应的Model后就可以在form标签内部其 它表单标签上通过为path指定Model属性的名称来绑定Model中的数据了 ...
- dubbo在eclipse中无法读取到dubbo.xsd
报错信息如下: Multiple annotations found at this line:– cvc-complex-type.2.4.c: The matching wildcard is s ...
- wpf(使用定时器)使用定时器操作UI界面
在项目实践中,我们 可能会遇到需要将一些控件上显示的内容只显示一段时间过后清空. 下面我们来实现这种操作: 首先需要注意的是:在wpf中涉及到界面操作的话,一定要使用定时器DispatcherTime ...
- .Net Core + NGINX跳转登录时端口丢失
使用.Net Core + NGINX部署到服务器的时候,如果端口不是使用默认的80端口,在跳转到登录页面时,URL中的端口丢失. NGINX的配置如下: server { listen ; loca ...
- .net core Memcached使用
首先,你要在你电脑上安装配置好Memcached环境哦 Startup类的ConfigureServices中加入 //memcachedcore1 services.AddEnyimMemcache ...
- Effective Java(1)-创建和销毁对象
Effective Java(1)-创建和销毁对象
- poj 3250 Bad Hair Day(栈的运用)
http://poj.org/problem?id=3250 Bad Hair Day Time Limit: 2000MS Memory Limit: 65536K Total Submissi ...
- 使用原生方法从kafka消费消息
kafka最早是linkedin开发的一套高性能类队列结构,具有发布—订阅功能.现在是apache的项目之一.支持很多种客户端从其中进行consume,网上也有许多第三方的客户端(注1),但下面我们只 ...
- Android Studio - Unable to create Debug Bridge: Unable to start adb server: adb server version (32) doesn't match this client (40)
错误提示:Unable to create Debug Bridge: Unable to start adb server: adb server version (32) doesn't matc ...
- 【转】目标检测之YOLO系列详解
本文逐步介绍YOLO v1~v3的设计历程. YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这 ...