Longest Increasing Subsequence的两种解法
问题描述:
给出一个未排序队列nums,如[10, 9, 2, 5, 3, 7, 101, 18]。找出其中最长的增长序列,但不是连续增长序列,如[2, 3, 7, 101]就是对应的最长增长序列LIS,因为序列不唯一,所以要求返回的是长度,如4.
一.动态规划 O(n^2):
比较容易想到的就是复杂度为O(n^2)的算法。这是一个备忘录算法,也是动态规划算法。需要建立一个备忘录dp,备忘录dp[i]记录序列从下标0到下标i最长的子序列长度。对于dp[j]的值则需要在nums序列红中找到0到(j-1)所有比nums[j]小元素,并在这些元素中选择备忘录dp值最大的一个如dp[k],则dp[j]=dp[k]+1;
public int lengthOfLIS(int[] nums) {
if(nums==null || nums.length==0)
return 0;
int[] bigLength=new int[nums.length];
for(int i=0;i<nums.length;i++) bigLength[i]=1;
int maxLength=1;
for(int i=1;i<nums.length;i++){
//从前面找到比 nums[i]小,且dp值最大的那个。加1便是当前的值
for(int j=0;j<i;j++){
if(nums[j]<nums[i])
bigLength[i]=Math.max(bigLength[j]+1,bigLength[i]);
} maxLength=Math.max(bigLength[i],maxLength);
}
return maxLength;
}
二 .二分法查找O(nlg(n))
首先建立一个栈stack来存储遍历到当前时刻 i 的一个最长递增序列(栈内是递增序列,但概念和题目中的递增序列不同)。设当前时刻为 i 则
1.如果元素 i 比栈顶元素大则入栈,stack[top++]=nums[i+1];
2.如果元素 i 比栈顶元素小,则在栈中采用二分查找法找到一个位置j 替换成当前元素nums[i] 。 该做法的目的是如果出现小元素就往栈内部替换,当前替换的结果影响下一次的替换,特别是栈顶元素。栈顶元素的替换需要比较stack[top],stack[top--]及nums[i]三个的值。
3.最后输出 栈的长度。
public int lengthOfLIS(int[] nums) {
if(nums==null || nums.length==0)
return 0; int[] stack= new int[nums.length];
int top=0; for(int num:nums){
if(top==0 || stack[top-1]<num) stack[top++]=num;
else{
//如果在栈中没有对应的元素,则将找到的插入坐标为 j 返回-j-1. 如果找到则返回对应的坐标位置。
int i=Arrays.binarySearch(dp,0,top,num);
i= i<0? -i-1:i;
dp[i]=num;
}
}
return top;
}
另外网上有关于只用栈没用利用二分法查找法的做法,使得复杂度变为O(n),试了下是不行的。他大概的思路是:
1.如果当前栈为空或栈顶元素小于当前元素nums[i],则入栈
2.如果nums[i]<stack[top] 且 nums[i]>stack[top-1] 则替换栈顶元素,stack[top]=nums[i]。
这种做法忽略了stack[top-1]之前的元素对stack[top-1]的影响。算法代码如下:
public int lengthOfLIS(int[] nums) {
int len=nums.length;
Stack<Integer> stack=new Stack<Integer>();
for(int i=len-1; i>=0; i--)
{
if(stack.isEmpty())
{
stack.push(nums[i]);
}else
{
int val= stack.pop();
if(stack.isEmpty())
{
if(nums[i]>=val)
{
val=nums[i];
}else
{
stack.push(val);
val=nums[i];
}
}else
{
int up=stack.peek();
if(nums[i]<val)
{
stack.push(val);
val=nums[i];
}else if(nums[i]>val && nums[i]<up)
{
val=nums[i];
}
}
stack.push(val);
}
}
return stack.size();
}
Longest Increasing Subsequence的两种解法的更多相关文章
- Longest Increasing Subsequence的两种算法
问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7-.an,求它的一个子序列(设为s1,s2,-sn),使得这个子序列满足这样的性质,s1<s2<s3<-<sn并且 ...
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- 最长上升子序列 LIS(Longest Increasing Subsequence)
引出: 问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7….an,求它的一个子序列(设为s1,s2,…sn),使得这个子序列满足这样的性质,s1<s2<s3<…< ...
- Longest Increasing Subsequence - LeetCode
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- [tem]Longest Increasing Subsequence(LIS)
Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...
- [LintCode] Longest Increasing Subsequence 最长递增子序列
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- Leetcode 300 Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
随机推荐
- 一个将当前目录下HEX文件的第一行数据删除的程序
为什么要写这样一个函数 在使用SoftConsole开发M3程序时,生成的hex文件,必须要把第一行数据删除,才能在Libero中使用,所以写了这个小工具,这是2.0版本了,第一版是直接删除第一行数据 ...
- MYSQL之视图、触发器、事务
一 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,可以将该结果集当做表来使用. 使用视图我们可以把查询过程中的 ...
- AndroidStudio更改包名
最近开发一个项目 和以前开发的某一个功能类似 不想再重新搭建界面 从零开始去写... 就想把原来的项目copy一份 但是这样的话安装在手机中会把原来的项目覆盖掉 这是因为它们的applicationI ...
- AssetBundle一些问题
AssetBundle划分过细的问题,比如每个资源都是AssetBundle. 加载IO次数过多,从而增大了硬件设备耗能和发热的压力: Unity 5.3 ~ 5.5 版本中,Android平台上在不 ...
- .net中 多线程 笔记(基础)
1. 在进程中可以有多个线程同时执行代码.进程之间是相对独立的,一个进程无法访问另一个进程的数据(除非利用分布式计算方式),一个进程运行的失败也不会影响其他进程的运行,Windows系统就是利用进程把 ...
- 在vsphere6.5启用Tesla K80
基础环境: vsphere6.5 VMware vCenter6.5 宝德服务器2750S Tesla K80 0x01 选择主机,配置→硬件→PCI设备→添加K80显卡 注意:1.添加完显卡后,主机 ...
- webpack3升级为webpack4
写在前面的话:为什么要升级,因为公司目前的项目使用webpack3,但是因为是多页应用,入口估计有一百多个,开发模式下慢得不像话,修改一个文件需要十几秒才编译好,之前的解决方案是减少入口,但是要调试其 ...
- SICP读书笔记 2.2
SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...
- ThinkPHP3.2开发仿京东商城项目实战视频教程
ThinkPHP3.2仿京东商城视频教程实战课程,ThinkPHP3.2开发大型商城项目实战视频 第一天 1.项目说明 2.时间插件.XSS过滤.在线编辑器使用 3.商品的删除 4.商品的修改完成-一 ...
- webpack2.0+ vue2.0
一 webpack 2.0 及用到的插件安装(默认已经有node环境) 1. package.json文件 (插件安装及插件的功能不详解) { "private": true, & ...