【bzoj题解】2186 莎拉公主的困惑
题目传送门。
题意:求\([1,n!]\)中与\(m!\)互质的数的个数,对质数\(R\)取模,\(n\geq m\)。
答案应该等于\(\frac{n!}{m!}\phi(m!)=\frac{n!}{m!}m!\prod_{p|m!}\frac{p-1}{p}=n!\frac{\prod_{p\leq m}\,p-1}{\prod_{p\leq m}\,p}\)。
这里\(p\)为小于等于\(m\)的质数。
所以我们处理出阶乘,以及质数的乘积和对\(R\)的逆元就能得出答案。
你真的这么想?
naive!simple!
如果\(n\geq R\),答案一定为\(0\)吗?
可以看看这组数据:
答案为\(2\),因为\(8\,mod\,3=2\)。
但是\(4!\frac{1\cdot 2}{2\cdot 3}\)呢?\(4!=24\),而\(24\,mod\,3=0\),但是答案非\(0\)。
正确的做法是什么?
当\(n\geq R\)时,如果\(m\geq R\)的话,\(n!\)中的因子\(R\)就有可能被分母消掉,我们应该要对\(n\geq R\)的\(n!\)消掉一个\(R\),对\(m\geq R\)的分母也消掉一个\(R\)。
这样就不会有问题了。
代码如下:
#include<cstdio>
#define F(i,a,b) for(int i=(a);i<=(b);++i)
#define F2(i,a,b) for(int i=(a);i<(b);++i)
int T,Mod,n,m;
int primes[], pnum=;
bool isn_prime[];
int pi[],inv[];
int in[],fct[];
int pos[];
void init(){
isn_prime[]=isn_prime[]=;
F(i,,){
if(!isn_prime[i]) primes[++pnum]=i;
for(int j=;j<=pnum&&primes[j]*i<=;++j){
isn_prime[primes[j]*i]=;
if(i%primes[j]==) break;
}
}
inv[]=; for(int i=;i<Mod&&i<=;++i)
inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod;
pi[]=; F(i,,pnum) pi[i]=1ll*pi[i-]*(primes[i]-)%Mod;
in[]=; F(i,,pnum) if(primes[i]!=Mod) in[i]=1ll*in[i-]*inv[primes[i]%Mod]%Mod; else in[i]=in[i-];
fct[]=; F(i,,) if(i!=Mod) fct[i]=1ll*fct[i-]*i%Mod; else fct[i]=fct[i-];
F(i,,) if(isn_prime[i]) pos[i]=pos[i-]; else pos[i]=pos[i-]+;
}
int main(){
scanf("%d%d",&T,&Mod);
init();
while(T--){
scanf("%d%d",&n,&m);
if(n>=Mod&&m<Mod) puts("");
else printf("%d\n",1ll*fct[n]*pi[pos[m]]%Mod*in[pos[m]]%Mod);
}
return ;
}
【bzoj题解】2186 莎拉公主的困惑的更多相关文章
- [BZOJ 2186][SDOI 2008] 莎拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 4519 Solved: 1560[Submit][S ...
- 莎拉公主的困惑(bzoj 2186)
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...
- 【BZOJ】2186 沙拉公主的困惑
一道很有价值的题. [解析1]欧几里德算法求乘法逆元,前缀和 [Analysis]O(T n log n). [Sum] ①int运算.假设会超出界,第一个数前要加上(LL)即类型转换. ②gcd不变 ...
- BZOJ:2186: [Sdoi2008]沙拉公主的困惑
问题:可能逆元不存在吗? 题解: Gcd(a,b)==Gcd(b,a-b); 从数据范围可以看出应该求M!的欧拉函数: 然后通过Gcd转化过去 一开始没想到 #include<iostream& ...
- 【题解】SDOI2008莎拉公主的困惑
挺有趣的恩:洛谷P2155 在纸上打打草稿,写出n!个数,从先往后,遇到不互质的就筛掉——发现一个奇妙的性质!:筛掉的次数.顺序好像是周期性出现的呢~ 而且更加妙妙的是,好像还是m!一轮..那么因为n ...
- 【NOI题解】【bzoj题解】NOI2008 bzoj1063 道路设计
@ACMLCZH学长出的毒瘤题T3.再也不是“善良”的出题人了. 题意:bzoj. 题解: 经典的树形DP题目,屡见不鲜了,然而我还是没有写出来. 这一类的题目有很多,例如这里的C题. 主要套路是把对 ...
- BZOJ 题解continue
1041 圆上的整点 暴力枚举 会超时 这道题很像之前一次noip模拟题(当时的我还太水了(虽然现在也很水)) x2+y2=R2 考虑变型 x2=(R+y)(R-y) int d=gcd(R,y) i ...
- bzoj题解汇总(1017-1020)
bzoj1017: 树形dp. 设\(f[i][j][k]\)表示当前在点\(i\),有\(j\)个用于上层合成,花费金币为\(k\)的最大攻击力. bzoj1018: 一题多解. http://ww ...
- 【bzoj题解】1012 最大数
题目描述 现在请求你维护一个数列,要求提供以下两种操作:1.查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2.插入操作.语法:A ...
随机推荐
- MachineLearning Exercise 7 : K-means Clustering and Principle Component Analysis
findClosestCentroids.m m = size(X,); :m [value index] = min(sum((repmat(X(i,:),K,)-centroids).^,)); ...
- 一些$LCT$的瓜皮题目
一些瓜皮 放几个比较优(she)秀(pi)的\(LCT\)题. 老惯例,每一题代码因为一些未知原因消失了(如果要的话私我好了,虽然会咕咕咕). 嘴巴\(AC\)真香! [SP16580] QTREE7 ...
- 关于PHP 时区错误的问题
php的ini文件中时区配置默认为关闭状态 这会导致调用时间函数时出错,所以要开启时区并且配置自己的时区: 查询手册找到所有的时区有: 所以修改配置为: 重启apache问题解决
- 洛谷 P4128 [SHOI2006]有色图 解题报告
P4128 [SHOI2006]有色图 题目描述 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图.如果两张有色图有相同数量的 ...
- 【bzoj1483】 HNOI2009—梦幻布丁
http://www.lydsy.com/JudgeOnline/problem.php?id=1483 (题目链接) 题意 $n$个布丁摆成一行,进行$m$次操作.每次将某个颜色的布丁全部变成另一种 ...
- Mysql分页显示
第一部分:看一下分页的基本原理: mysql explain SELECT * FROM message ORDER BY id DESC LIMIT 10000, 20************* ...
- gitlab相关
1.gitlab的概述 1.gitlab是什么 是一个用于仓库管理系统的开源项目,使用Git作为代码管理工具,并在此基础上搭建起来的web服务. 基础功能免费,高级功能收费 2.为什么要使用gitla ...
- servlet解析
什么是Servlet2,Servlet有什么作用3,Servlet的生命周期4,Servlet怎么处理一个请求5,Servlet与JSP有什么区别6,Servlet里的cookie技术7,Servle ...
- nginx启用stream日志配置文件
主配置文件/etc/nginx/nginx.conf增加内容: stream { log_format proxy '$remote_addr [$time_local] ' '$protocol $ ...
- 第一天:简单工厂模式与UML类图
何为简单工厂模式: 通过专门定义一个类,来负责创建其他类的实例,这些其它类通常具有共同的父类. 简单工厂模式的UML类图: 简单工厂模式中包含的角色和相应的职责如下: ...