【CodeForces】961 G. Partitions 斯特林数
【题目】G. Partitions
【题意】n个数$w_i$,每个非空子集S的价值是$W(S)=|S|\sum_{i\in S}w_i$,一种划分方案的价值是所有非空子集的价值和,求所有划分成k个非空子集的方案的价值和。1<=k<=n<=2*10^5,1<=wi<=10^9。
【算法】斯特林数
【题解】首先价值与具体数字没有关系,即:
$$ans=num*\sum_{i=1}^{n}w_i$$
其中num表示1在每个k划分方案中所在集合的大小的和。
考虑一种角度,所在集合的大小可以视为所在集合的每个数字贡献了1的价值,那么答案就是1和每个数字在同一个集合的方案数,即:
$$num=\begin{Bmatrix}n\\ k\end{Bmatrix}+(n-1)*\begin{Bmatrix}n-1\\ k\end{Bmatrix}$$
其中1自己的贡献是s(n,k),其余n-1个数字的贡献是将它和1视为整体的方案数s(n-1,k)。
斯特林数可以用通项公式O(k)计算,总复杂度O(n ln n)。
(代码略)
以上是正解,但一般人很容易yy出下面的等式:
$$num=\sum_{i=1}^{n}i*\binom{n-1}{i-1}\begin{Bmatrix}n-i\\ k-1\end{Bmatrix}$$
即枚举1所在集合大小。
两式必然等价,证明如下:
最后一步是通过实际含义,即枚举j,n-2个人中选n-j个人,这n-j个人分成k-1组的方案,相当于枚举n-1个人中第一个人所在集合的大小,所以等价于s(n-1,k)。
另一种写法:【CF961G】Partitions 第二类斯特林数
非常经典的,把斯特林数暴力拆分然后往前提,快速处理后面的组合数
把组合数通过分解i变成C(n-1,i-1)的形式,然后可以用二项式定理化简。
【CodeForces】961 G. Partitions 斯特林数的更多相关文章
- 【cf961G】G. Partitions(组合意义+第二类斯特林数)
传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...
- 【CF961G】Partitions(第二类斯特林数)
[CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...
- Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数
题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...
- Codeforces 1097G Vladislav and a Great Legend [树形DP,斯特林数]
洛谷 Codeforces 这题真是妙的很. 通过看题解,终于知道了\(\sum_n f(n)^k\)这种东西怎么算. update:经过思考,我对这题有了更深的理解,现将更新内容放在原题解下方. ...
- 【CF961G】Partitions 第二类斯特林数
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...
- Codeforces Round #100 E. New Year Garland (第二类斯特林数+dp)
题目链接: http://codeforces.com/problemset/problem/140/E 题意: 圣诞树上挂彩球,要求从上到下挂\(n\)层彩球.已知有\(m\)种颜色的球,球的数量不 ...
- Codeforces 715E - Complete the Permutations(第一类斯特林数)
Codeforces 题面传送门 & 洛谷题面传送门 神仙题.在 AC 此题之前,此题已经在我的任务计划中躺了 5 个月的灰了. 首先考虑这个最短距离是什么东西,有点常识的人(大雾)应该知道, ...
- Codeforces 1097G - Vladislav and a Great Legend(第二类斯特林数+树上背包)
Codeforces 题目传送门 & 洛谷题目传送门 首先看到这题我的第一反应是:这题跟这题长得好像,不管三七二十一先把 \(k\) 次方展开成斯特林数的形式,\(f(X)^k=\sum\li ...
- Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...
随机推荐
- 在dell服务器上装windows server 2012详细解析
壹: 首先确定磁盘阵列的问题,在dell服务器开机后按住 Ctrl+R 或者 F2 会展开虚拟磁盘创建菜单 详细步骤可以查看:https://jingyan.baidu.com/article/915 ...
- fidder监控请求响应时间和请求IP(摘抄至网络)
增加监控请求的详情时间 在CustomRules.js的class Handlers中增加 //添加请求的响应时间 public static BindUIColumn("Time Tak ...
- [百度贴吧]10GB 通信线缆
现在,即使光纤通信能够带来最低延迟的优势,但是许多IT部门依然在10G以太网(10G bE)中使用铜缆布线,来实现交换机和交换机或者和服务器之间的连接.目前主要有两种主要的铜缆布线技术应用在10 Gb ...
- multi thread for Java
I try to do a testing for HashTable Sychronized behavior today. As an Sychronized Object, HashTable ...
- YARN与MapReduce1的对比
Apache YARN (Yet Another Resource Negotiator)从Hadoop2开始.YARN为集群提供资源管理和Applications的调度.YARN的API用于操作集群 ...
- bzoj2095-Bridge
题意 一个 \(n\) 个点 \(m\) 条边的图,每条边双向都有权值(可能不一样).求从 1 开始,经过所有点,经过所有边一次且仅一次(即一定要经过这条边的某个方向)回到 1 的路径上权值最大的最小 ...
- P4645 [COCI2006-2007 Contest#3] BICIKLI
题意翻译 给定一个有向图,n个点,m条边.请问,1号点到2号点有多少条路径?如果有无限多条,输出inf,如果有限,输出答案模10^9的余数. 两点之间可能有重边,需要看成是不同的路径. 题目描述 A ...
- SSL身份认证原理 - 目标: 搞清楚数字证书和数字签名的关系
1 概述 1.1 产生背景 基于万维网的电子商务和网上银行等新兴应用,极大地方便了人们的日常生活,受到人们的青睐.由于这些应用都需要在网络上进行在线交易,它们对网络通信的安全性提出了更高的要求.传 ...
- 【python】爬虫实践
参考链接 https://blog.csdn.net/u012662731/article/details/78537432 详解 python3 urllib https://www.jianshu ...
- BZOJ4870 [Shoi2017]组合数问题 【组合数 + 矩乘】
题目链接 BZOJ4870 题解 \[ans = \sum\limits_{i = 0}^{\infty}{nk \choose ik + r} \pmod p\] 发现实际是求 \[ans = \s ...