2018.09.25 poj2068 Nim(博弈论+dp)
传送门
题意简述:m个石子,有两个队每队n个人循环取,每个人每次取石子有数量限制,取最后一块的输,问先手能否获胜。
博弈论+dp。
我们令f[i][j]f[i][j]f[i][j]表示当前第i个人取石子,石子还剩下j个时能否获胜。
显然如果有取法让轮到第(i+1)(i+1)(i+1) modmodmod 2n2n2n 个人有必败状态,那么的当前就是必胜状态。
再令k=(i+1)k=(i+1)k=(i+1) modmodmod 2n2n2n
于是f[i][j]=f[k][j−1]∣f[k][j−2]∣...∣f[k][max(0,j−m[i])]f[i][j]=f[k][j-1]|f[k][j-2]|...|f[k][max(0,j-m[i])]f[i][j]=f[k][j−1]∣f[k][j−2]∣...∣f[k][max(0,j−m[i])]
由于是循环dp,因此选择记忆化搜索要好些一些。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,s,m[25],f[25][10005];
inline int dfs(int p,int sum){
if(~f[p][sum])return f[p][sum];
if(!sum)return f[p][sum]=1;
int up=min(m[p],sum);
for(int i=1;i<=up;++i)if(!dfs((p+1)%n,sum-i))return f[p][sum]=1;
return f[p][sum]=0;
}
int main(){
while(scanf("%d",&n)&&n){
scanf("%d",&s),memset(f,-1,sizeof(f)),n<<=1;
for(int i=0;i<n;++i)scanf("%d",&m[i]);
printf("%d\n",dfs(0,s));
}
return 0;
}
2018.09.25 poj2068 Nim(博弈论+dp)的更多相关文章
- POJ2068 Nim 博弈论 dp
http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...
- 2018.09.25 bzoj2286: [Sdoi2011]消耗战(虚树+树形dp)
传送门 又一道虚树入门题. 这个dp更简单啊. 直接记录每个点到1的距离,简单转移就行了. 代码: #include<bits/stdc++.h> #define N 250005 #de ...
- 2018.09.25 bzoj3572: [Hnoi2014]世界树(虚树+树形dp)
传送门 虚树入门题? 好难啊. 在学习别人的写法之后终于过了. 这道题dp方程很好想. 主要是不好写. 简要说说思路吧. 显然最优值只能够从子树和父亲转移过来. 于是我们先dfs一遍用儿子更新父亲,然 ...
- 2018.09.25 51nod1597 有限背包计数问题(背包+前缀和优化)
传送门 dp好题. 我认为原题的描述已经很清楚了: 你有一个大小为n的背包,你有n种物品,第i种物品的大小为i,且有i个,求装满这个背包的方案数有多少. 两种方案不同当且仅当存在至少一个数i满足第i种 ...
- 2018.09.01 poj3071Football(概率dp+二进制找规律)
传送门 概率dp简单题. 设f[i][j]表示前i轮j获胜的概率. 如果j,k能够刚好在第i轮相遇,找规律可以发现j,k满足: (j−1)>>(i−1)" role=" ...
- 2018.09.01 独立集(树形dp)
描述 给定一颗树(边权为1),选取一个节点子集,使得该集合中任意两个节点之间的距离都大于K.求这个集合节点最多是多少 输入 第一行是两个整数N,K 接下来是N-1行,每行2个整数x,y,表示x与y有一 ...
- 2018.09.25 bzoj1856: [Scoi2010]字符串(组合数学)
传送门 如果有n==m的条件就是卡特兰数. 但现在n不一定等于m. 我们可以考虑用求卡特兰数一样的方法来求答案. 我们知道有一种求卡特兰数的方法是转到二维平面求答案. 这道题就可以这样做. 我们将这个 ...
- 2018.09.25 codeforces1053E. Euler tour(并查集+st表+模拟)
传送门 毒瘤细节题. 首先考虑不合法的情况. 先把相同的值配对,这样就构成了一些区间. 那么如果这些区间有相交的话,就不合法了. 如何判断?DZYO安利了一波st表,我觉得很不错. 接着考虑两个相同的 ...
- 2018.09.25 poj3070 Fibonacci(矩阵快速幂)
传送门 矩阵快速幂板题,写一道来练练手. 这一次在poj做题总算没忘了改万能库. 代码: #include<iostream> #include<cstdio> #define ...
随机推荐
- leetcode100
/** * Definition for a binary tree node. * public class TreeNode { * public int val; * public TreeNo ...
- 通过beego快速创建一个Restful风格API项目及API文档自动化(转)
通过beego快速创建一个Restful风格API项目及API文档自动化 本文演示如何快速(一分钟内,不写一行代码)的根据数据库及表创建一个Restful风格的API项目,及提供便于在线测试API的界 ...
- Haskell语言学习笔记(63)Dicidable
Dicidable class Divisible f => Decidable f where lose :: (a -> Void) -> f a choose :: (a -& ...
- Haskell语言学习笔记(30)MonadCont, Cont, ContT
MonadCont 类型类 class Monad m => MonadCont m where callCC :: ((a -> m b) -> m a) -> m a in ...
- chrome 调试跨域iframe
相关链接:https://stackoverflow.com/questions/3102819/disable-same-origin-policy-in-chrome https://stacko ...
- Eletron 打开文件夹,截图
1.shell.openItem(fullPath) var fullpath = path.join(processPath)+Math.random()+".png"; she ...
- python webdriver启动IE浏览器
from selenium import webdriverfrom selenium.webdriver.common.desired_capabilities import DesiredCapa ...
- android笔记:Service
服务:在后台运行,没有界面的组件. 服务生命周期如下: 两种启动方式: 1.startService(): onCreate()-->onStartCommand()-->onDestro ...
- hdoj1078(介绍记忆化搜索及其模板)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1078 思路: 这是一道典型的记忆化搜索模板题. 先介绍记忆化搜索,本质是搜索+DP. 一般说来,动态规 ...
- Ubuntu中解决机箱前置耳机没声音
Ubuntu中解决机箱前置耳机没声音 安装pavucontrol软件: sudo apt-get install pavucontrol 然后直接运行pavucontrol打开软件: 将输出设备设置为 ...